Vai al contenuto principale della pagina

Advances in Gait-Based Identification : A Systematic Review of Deep Learning Models Leveraging Computer Vision Techniques / / by Diogo R. M. Bastos, João Manuel R. S. Tavares



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Bastos Diogo R. M Visualizza persona
Titolo: Advances in Gait-Based Identification : A Systematic Review of Deep Learning Models Leveraging Computer Vision Techniques / / by Diogo R. M. Bastos, João Manuel R. S. Tavares Visualizza cluster
Pubblicazione: Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Edizione: 1st ed. 2025.
Descrizione fisica: 1 online resource (XIX, 96 p. 22 illus., 18 illus. in color.)
Disciplina: 006.37
Soggetto topico: Computer vision
Image processing
Biomechanics
Artificial intelligence
Biometric identification
Computer Vision
Image Processing
Artificial Intelligence
Biometrics
Persona (resp. second.): R. S. TavaresJoão Manuel
Nota di contenuto: Introduction -- Background -- Research objectives and method -- Datasets -- Comparison of the reviewed methods -- Conclusion.
Sommario/riassunto: This book provides a systematic review of gait-based person identification, categorizing studies into deep-learning and non-deep-learning approaches while analyzing key datasets and performance metrics. It explores challenges such as covariant factors, e.g., viewing angles, clothing, and accessories, and highlights advancements in real-world gait recognition systems. With a structured methodology and transparent review process, this work serves as a valuable reference for researchers and a foundation for future developments in biometric identification.
Titolo autorizzato: Advances in Gait-Based Identification  Visualizza cluster
ISBN: 3-031-89560-6
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9911007357803321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Studies in Systems, Decision and Control, . 2198-4190 ; ; 593