Vai al contenuto principale della pagina
| Titolo: |
Machine learning challenges : evaluating predictive uncertainty visual object classification and recognizing textual entailment : First PASCAL Machine Learning Challenges Workshop, MLCW 2005, Southampton, UK, April 11-13, 2005 : revised selected papers / / Joaquin Quinonero-Candela ... [et al.] (eds.)
|
| Pubblicazione: | Berlin ; ; New York, : Springer, c2006 |
| Edizione: | 1st ed. 2006. |
| Descrizione fisica: | 1 online resource (XIII, 462 p.) |
| Disciplina: | 006.3/1 |
| Soggetto topico: | Machine learning |
| Altri autori: |
Quinonero-CandelaJoaquin
|
| Note generali: | Bibliographic Level Mode of Issuance: Monograph |
| Nota di bibliografia: | Includes bibliographical references and index. |
| Nota di contenuto: | Evaluating Predictive Uncertainty Challenge -- Classification with Bayesian Neural Networks -- A Pragmatic Bayesian Approach to Predictive Uncertainty -- Many Are Better Than One: Improving Probabilistic Estimates from Decision Trees -- Estimating Predictive Variances with Kernel Ridge Regression -- Competitive Associative Nets and Cross-Validation for Estimating Predictive Uncertainty on Regression Problems -- Lessons Learned in the Challenge: Making Predictions and Scoring Them -- The 2005 PASCAL Visual Object Classes Challenge -- The PASCAL Recognising Textual Entailment Challenge -- Using Bleu-like Algorithms for the Automatic Recognition of Entailment -- What Syntax Can Contribute in the Entailment Task -- Combining Lexical Resources with Tree Edit Distance for Recognizing Textual Entailment -- Textual Entailment Recognition Based on Dependency Analysis and WordNet -- Learning Textual Entailment on a Distance Feature Space -- An Inference Model for Semantic Entailment in Natural Language -- A Lexical Alignment Model for Probabilistic Textual Entailment -- Textual Entailment Recognition Using Inversion Transduction Grammars -- Evaluating Semantic Evaluations: How RTE Measures Up -- Partial Predicate Argument Structure Matching for Entailment Determination -- VENSES – A Linguistically-Based System for Semantic Evaluation -- Textual Entailment Recognition Using a Linguistically–Motivated Decision Tree Classifier -- Recognizing Textual Entailment Via Atomic Propositions -- Recognising Textual Entailment with Robust Logical Inference -- Applying COGEX to Recognize Textual Entailment -- Recognizing Textual Entailment: Is Word Similarity Enough?. |
| Sommario/riassunto: | This book constitutes the refereed post-proceedings of the First PASCAL Machine Learning Challenges Workshop, MLCW 2005. 25 papers address three challenges: finding an assessment base on the uncertainty of predictions using classical statistics, Bayesian inference, and statistical learning theory; second, recognizing objects from a number of visual object classes in realistic scenes; third, recognizing textual entailment addresses semantic analysis of language to form a generic framework for applied semantic inference in text understanding. |
| Altri titoli varianti: | First PASCAL Machine Learning Challenges Workshop |
| PASCAL Machine Learning Challenges Workshop | |
| MLCW 2005 | |
| Titolo autorizzato: | Machine learning challenges ![]() |
| ISBN: | 3-540-33428-9 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910484524603321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |