Vai al contenuto principale della pagina

Machine learning challenges : evaluating predictive uncertainty visual object classification and recognizing textual entailment : First PASCAL Machine Learning Challenges Workshop, MLCW 2005, Southampton, UK, April 11-13, 2005 : revised selected papers / / Joaquin Quinonero-Candela ... [et al.] (eds.)



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Machine learning challenges : evaluating predictive uncertainty visual object classification and recognizing textual entailment : First PASCAL Machine Learning Challenges Workshop, MLCW 2005, Southampton, UK, April 11-13, 2005 : revised selected papers / / Joaquin Quinonero-Candela ... [et al.] (eds.) Visualizza cluster
Pubblicazione: Berlin ; ; New York, : Springer, c2006
Edizione: 1st ed. 2006.
Descrizione fisica: 1 online resource (XIII, 462 p.)
Disciplina: 006.3/1
Soggetto topico: Machine learning
Altri autori: Quinonero-CandelaJoaquin  
Note generali: Bibliographic Level Mode of Issuance: Monograph
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Evaluating Predictive Uncertainty Challenge -- Classification with Bayesian Neural Networks -- A Pragmatic Bayesian Approach to Predictive Uncertainty -- Many Are Better Than One: Improving Probabilistic Estimates from Decision Trees -- Estimating Predictive Variances with Kernel Ridge Regression -- Competitive Associative Nets and Cross-Validation for Estimating Predictive Uncertainty on Regression Problems -- Lessons Learned in the Challenge: Making Predictions and Scoring Them -- The 2005 PASCAL Visual Object Classes Challenge -- The PASCAL Recognising Textual Entailment Challenge -- Using Bleu-like Algorithms for the Automatic Recognition of Entailment -- What Syntax Can Contribute in the Entailment Task -- Combining Lexical Resources with Tree Edit Distance for Recognizing Textual Entailment -- Textual Entailment Recognition Based on Dependency Analysis and WordNet -- Learning Textual Entailment on a Distance Feature Space -- An Inference Model for Semantic Entailment in Natural Language -- A Lexical Alignment Model for Probabilistic Textual Entailment -- Textual Entailment Recognition Using Inversion Transduction Grammars -- Evaluating Semantic Evaluations: How RTE Measures Up -- Partial Predicate Argument Structure Matching for Entailment Determination -- VENSES – A Linguistically-Based System for Semantic Evaluation -- Textual Entailment Recognition Using a Linguistically–Motivated Decision Tree Classifier -- Recognizing Textual Entailment Via Atomic Propositions -- Recognising Textual Entailment with Robust Logical Inference -- Applying COGEX to Recognize Textual Entailment -- Recognizing Textual Entailment: Is Word Similarity Enough?.
Sommario/riassunto: This book constitutes the refereed post-proceedings of the First PASCAL Machine Learning Challenges Workshop, MLCW 2005. 25 papers address three challenges: finding an assessment base on the uncertainty of predictions using classical statistics, Bayesian inference, and statistical learning theory; second, recognizing objects from a number of visual object classes in realistic scenes; third, recognizing textual entailment addresses semantic analysis of language to form a generic framework for applied semantic inference in text understanding.
Altri titoli varianti: First PASCAL Machine Learning Challenges Workshop
PASCAL Machine Learning Challenges Workshop
MLCW 2005
Titolo autorizzato: Machine learning challenges  Visualizza cluster
ISBN: 3-540-33428-9
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910484524603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Lecture notes in computer science. . -Lecture notes in artificial intelligence ; ; 3944.