Vai al contenuto principale della pagina
| Titolo: |
Machine Learning and Knowledge Extraction : 4th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2020, Dublin, Ireland, August 25–28, 2020, Proceedings / / edited by Andreas Holzinger, Peter Kieseberg, A Min Tjoa, Edgar Weippl
|
| Pubblicazione: | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
| Edizione: | 1st ed. 2020. |
| Descrizione fisica: | 1 online resource (XI, 552 p. 171 illus., 112 illus. in color.) |
| Disciplina: | 006.31 |
| Soggetto topico: | Artificial intelligence |
| Image processing - Digital techniques | |
| Computer vision | |
| Software engineering | |
| Computers | |
| Application software | |
| Artificial Intelligence | |
| Computer Imaging, Vision, Pattern Recognition and Graphics | |
| Software Engineering | |
| Computing Milieux | |
| Computer and Information Systems Applications | |
| Persona (resp. second.): | HolzingerAndreas |
| KiesebergPeter | |
| TjoaA Min | |
| WeipplEdgar | |
| Note generali: | Includes index. |
| Nota di contenuto: | Explainable Artificial Intelligence: concepts, applications, research challenges and visions -- The Explanation Game: Explaining Machine Learning Models Using Shapley Values -- Back to the Feature: a Neural-Symbolic Perspective on Explainable AI -- Explain Graph Neural Networks to Understand Weighted Graph Features in Node Classification -- Explainable Reinforcement Learning: A Survey -- A Projected Stochastic Gradient algorithm for estimating Shapley Value applied in attribute importance -- Explaining predictive models with mixed features using Shapley values and conditional inference trees -- Explainable Deep Learning for Fault Prognostics in Complex Systems: A Particle Accelerator Use-Case -- eXDiL: A Tool for Classifying and eXplaining Hospital Discharge Letters -- Data Understanding and Interpretation by the Cooperation of Data Analyst and Medical Expert -- A study on the fusion of pixels and patient metadata in CNN-based classification of skin lesion images -- The European legal framework for medical AI -- An Efficient Method for Mining Informative Association Rules in Knowledge Extraction -- Interpretation of SVM using Data Mining Technique to Extract Syllogistic Rules -- Non-Local Second-Order Attention Network For Single Image Super Resolution -- ML-ModelExplorer: An explorative model-agnostic approach to evaluate and compare multi-class classifiers -- Subverting Network Intrusion Detection: Crafting Adversarial Examples Accounting for Domain-Specific Constraints -- Scenario-based Requirements Elicitation for User-Centric Explainable AI A Case in Fraud Detection -- On-the-fly Black-Box Probably Approximately Correct Checking of Recurrent Neural Networks -- Active Learning for Auditory Hierarchy -- Improving short text classification through global augmentation methods -- Interpretable Topic Extraction and Word Embedding Learning using row-stochastic DEDICOM -- A Clustering Backed Deep Learning Approach for Document Layout Analysis -- Calibrating Human-AI Collaboration: Impactof Risk, Ambiguity and Transparency on Algorithmic Bias -- Applying AI in Practice: Key Challenges and Lessons Learned -- Function Space Pooling For Graph Convolutional Networks -- Analysis of optical brain signals using connectivity graph networks -- Property-Based Testing for Parameter Learning of Probabilistic Graphical Models -- An Ensemble Interpretable Machine Learning Scheme for Securing Data Quality at the Edge -- Inter-Space Machine Learning in Smart Environments. |
| Sommario/riassunto: | This book constitutes the refereed proceedings of the 4th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2020, held in Dublin, Ireland, in August 2020. The 30 revised full papers presented were carefully reviewed and selected from 140 submissions. The cross-domain integration and appraisal of different fields provides an atmosphere to foster different perspectives and opinions; it will offer a platform for novel ideas and a fresh look on the methodologies to put these ideas into business for the benefit of humanity. Due to the Corona pandemic CD-MAKE 2020 was held as a virtual event. |
| Titolo autorizzato: | Machine Learning and Knowledge Extraction ![]() |
| ISBN: | 3-030-57321-4 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910416084403321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |