Vai al contenuto principale della pagina

Wireless communication signals : a laboratory-based approach / / Hüseyin Arslan



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Arslan Hüseyin <1968-> Visualizza persona
Titolo: Wireless communication signals : a laboratory-based approach / / Hüseyin Arslan Visualizza cluster
Pubblicazione: Hoboken, New Jersey : , : Wiley, , [2021]
©2021
Descrizione fisica: 1 online resource (467 pages)
Disciplina: 621.384
Soggetto topico: Wireless communication systems
Nota di contenuto: Intro -- Title Page -- Copyright -- Contents -- Preface -- List of Contributors -- Acronyms List -- Chapter 1 Hands‐on Wireless Communication Experience -- 1.1 Importance of Laboratory‐Based Learning of Wireless Communications -- 1.2 Model for a Practical Lab Bench -- 1.3 Examples of Co‐simulation with Hardware -- 1.4 A Sample Model for a Laboratory Course -- 1.4.1 Introduction to the SDR and Testbed Platform -- 1.4.2 Basic Simulation -- 1.4.3 Measurements and Multidimensional Signal Analysis -- 1.4.4 Digital Modulation -- 1.4.5 Pulse Shaping -- 1.4.6 RF Front‐end and RF Impairments -- 1.4.7 Wireless Channel and Interference -- 1.4.8 Synchronization and Channel Estimation -- 1.4.9 OFDM Signal Analysis and Performance Evaluation -- 1.4.10 Multiple Accessing -- 1.4.11 Independent Project Development Phase -- 1.4.11.1 Software Defined Radio -- 1.4.11.2 Dynamic Spectrum Access and CR Experiment -- 1.4.11.3 Wireless Channel -- 1.4.11.4 Wireless Channel Counteractions -- 1.4.11.5 Antenna Project -- 1.4.11.6 Signal Intelligence -- 1.4.11.7 Channel, User, and Context Awareness Project -- 1.4.11.8 Combination of DSP Lab with RF and Microwave Lab -- 1.4.11.9 Multiple Access and Interference Management -- 1.4.11.10 Standards -- 1.5 Conclusions -- References -- Chapter 2 Performance Metrics and Measurements -- 2.1 Signal Quality Measurements -- 2.1.1 Measurements Before Demodulation -- 2.1.2 Measurements During and After Demodulation -- 2.1.2.1 Noise Figure -- 2.1.2.2 Channel Frequency Response Estimation -- 2.1.3 Measurements After Channel Decoding -- 2.1.3.1 Relation of SNR with BER -- 2.1.4 Error Vector Magnitude -- 2.1.4.1 Error‐Vector‐Time and Error‐Vector‐Frequency -- 2.1.4.2 Relation of EVM with Other Metrics -- 2.1.4.3 Rho -- 2.1.5 Measures After Speech or Video Decoding -- 2.2 Visual Inspections and Useful Plots -- 2.2.1 Advanced Scatter Plot.
2.3 Cognitive Radio and SDR Measurements -- 2.4 Other Measurements -- 2.5 Clarifying dB and dBm -- 2.6 Conclusions -- References -- Chapter 3 Multidimensional Signal Analysis -- 3.1 Why Multiple Dimensions in a Radio Signal? -- 3.2 Time Domain Analysis -- 3.2.1 CCDF and PAPR -- 3.2.2 Time Selectivity Measure -- 3.3 Frequency Domain Analysis -- 3.3.1 Adjacent Channel Power Ratio -- 3.3.2 Frequency Selectivity Measure -- 3.4 Joint Time‐Frequency Analysis -- 3.5 Code Domain Analysis -- 3.5.1 Code Selectivity -- 3.6 Correlation Analysis -- 3.7 Modulation Domain Analysis -- 3.8 Angular Domain Analysis -- 3.8.1 Direction Finding -- 3.8.2 Angular Spread -- 3.9 MIMO Measurements -- 3.9.1 Antenna Correlation -- 3.9.2 RF Cross‐Coupling -- 3.9.3 EVM Versus Antenna Branches -- 3.9.4 Channel Parameters -- 3.10 Conclusions -- References -- Chapter 4 Simulating a Communication System -- 4.1 Simulation: What, Why? -- 4.2 Approaching a Simulation -- 4.2.1 Strategy -- 4.2.2 General Methodology -- 4.3 Basic Modeling Concepts -- 4.3.1 System Modeling -- 4.3.2 Subsystem Modeling -- 4.3.3 Stochastic Modeling -- 4.4 What is a Link/Link‐level Simulation? -- 4.4.1 Source and Source Coding -- 4.4.2 Channel Coding -- 4.4.3 Symbol Mapping/Modulation -- 4.4.4 Upsampling -- 4.4.5 Digital Filtering -- 4.4.6 RF Front‐end -- 4.4.7 Channel -- 4.4.8 Synchronization and Equalization -- 4.4.9 Performance Evaluation and Signal Analysis -- 4.5 Communication in AWGN - A Simple Case Study -- 4.5.1 Receiver Design -- 4.6 Multi‐link vs. Network‐level Simulations -- 4.6.1 Network Layout Generation -- 4.6.1.1 Hexagonal Grid -- 4.6.1.2 PPP‐based Network Layout -- 4.7 Practical Issues -- 4.7.1 Monte Carlo Simulations -- 4.7.2 Random Number Generation -- 4.7.2.1 White Noise Generation -- 4.7.2.2 Random Binary Sequence -- 4.7.3 Values of Simulation Parameters -- 4.7.4 Confidence Interval.
4.7.5 Convergence/Stopping Criterion -- 4.8 Issues/Limitations of Simulations -- 4.8.1 Modeling Errors -- 4.8.1.1 Errors in System Model -- 4.8.1.2 Errors in Subsystem Model -- 4.8.1.3 Errors in Random Process Modeling -- 4.8.2 Processing Errors -- 4.9 Conclusions -- References -- Chapter 5 RF Impairments -- 5.1 Radio Impairment Sources -- 5.2 IQ Modulation Impairments -- 5.3 PA Nonlinearities -- 5.4 Phase Noise and Time Jitter -- 5.5 Frequency Offset -- 5.6 ADC/DAC Impairments -- 5.7 Thermal Noise -- 5.8 RF Impairments and Interference -- 5.8.1 Harmonics and Intermodulation Products -- 5.8.2 Multiple Access Interference -- 5.9 Conclusions -- References -- Chapter 6 Digital Modulation and Pulse Shaping -- 6.1 Digital Modulation Basics -- 6.2 Popularly Used Digital Modulation Schemes -- 6.2.1 PSK -- 6.2.2 FSK -- 6.2.2.1 GMSK and Approximate Representation of GSM GMSK Signal -- 6.2.3 QAM -- 6.2.4 Differential Modulation -- 6.3 Adaptive Modulation -- 6.3.1 Gray Mapping -- 6.3.2 Calculation of Error -- 6.3.3 Relation of EbNo with SNR at the Receiver -- 6.4 Pulse‐Shaping Filtering -- 6.5 Conclusions -- References -- Chapter 7 OFDM Signal Analysis and Performance Evaluation -- 7.1 Why OFDM? -- 7.2 Generic OFDM System Design and Its Evaluation -- 7.2.1 Basic CP‐OFDM Transceiver Design -- 7.2.2 Spectrum of the OFDM Signal -- 7.2.3 PAPR of the OFDM Signal -- 7.2.4 Performance in Multipath Channel -- 7.2.4.1 Time‐Dispersive Multipath Channel -- 7.2.4.2 Frequency‐Dispersive Multipath Channel -- 7.2.5 Performance with Impairments -- 7.2.5.1 Frequency Offset -- 7.2.5.2 Symbol Timing Error -- 7.2.5.3 Sampling Clock Offset -- 7.2.5.4 Phase Noise -- 7.2.5.5 PA Nonlinearities -- 7.2.5.6 I/Q Impairments -- 7.2.6 Summary of the OFDM Design Considerations -- 7.2.7 Coherent versus Differential OFDM -- 7.3 OFDM‐like Signaling -- 7.3.1 OFDM Versus SC‐FDE.
7.3.2 Multi‐user OFDM and OFDMA -- 7.3.3 SC‐FDMA and DFT‐S‐OFDM -- 7.4 Case Study: Measurement‐Based OFDM Receiver -- 7.4.1 System Model -- 7.4.1.1 Frame Format -- 7.4.1.2 OFDM Symbol Format -- 7.4.1.3 Baseband Transmitter Blocks and Transmitted Signal Model -- 7.4.1.4 Received Signal Model -- 7.4.2 Receiver Structure and Algorithms -- 7.4.2.1 Packet Detection -- 7.4.2.2 Frequency Offset Estimation and Compensation -- 7.4.2.3 Symbol Timing Estimation -- 7.4.2.4 Packet‐end Detection and Packet Extraction -- 7.4.2.5 Channel Estimation and Equalization -- 7.4.2.6 Pilot Tracking -- 7.4.2.7 Auto‐modulation Detection -- 7.4.3 FCH Decoding -- 7.4.4 Test and Measurements -- 7.5 Conclusions -- References -- Chapter 8 Analysis of Single‐Carrier Communication Systems -- 8.1 A Simple System in AWGN Channel -- 8.2 Flat Fading (Non‐Dispersive) Multipath Channel -- 8.3 Frequency‐Selective (Dispersive) Multipath Channel -- 8.3.1 Time‐Domain Equalization -- 8.3.2 Channel Estimation -- 8.3.3 Frequency‐Domain Equalization -- 8.4 Extension of Dispersive Multipath Channel to DS‐CDMA‐based Wideband Systems -- 8.5 Conclusions -- References -- Chapter 9 Multiple Accessing, Multi‐Numerology, Hybrid Waveforms -- 9.1 Preliminaries -- 9.1.1 Duplexing -- 9.1.2 Downlink Communication -- 9.1.3 Uplink Communication -- 9.1.4 Traffic Theory and Trunking Gain -- 9.2 Orthogonal Design -- 9.2.1 TDMA -- 9.2.2 FDMA -- 9.2.3 Code Division Multiple Access (CDMA) -- 9.2.4 Frequency Hopped Multiple Access (FHMA) -- 9.2.5 Space Division Multiple Access (SDMA) -- 9.2.5.1 Multiuser Multiple‐input Multiple‐output (MIMO) -- 9.3 Non‐orthogonal Design -- 9.3.1 Power‐domain Non‐orthogonal Multiple Access (PD‐NOMA) -- 9.3.2 Code‐domain Non‐orthogonal Multiple Access -- 9.4 Random Access -- 9.4.1 ALOHA -- 9.4.2 Carrier Sense Multiple Accessing (CSMA) -- 9.4.3 Multiple Access Collision Avoidance (MACA).
9.4.4 Random Access Channel (RACH) -- 9.4.5 Grant‐free Random Access -- 9.5 Multiple Accessing with Application‐Based Hybrid Waveform Design -- 9.5.1 Multi‐numerology Orthogonal Frequency Division Multiple Access (OFDMA) -- 9.5.2 Radar‐Sensing and Communication (RSC) Coexistence -- 9.5.3 Coexistence of Different Waveforms in Multidimensional Hyperspace for 6G and Beyond Networks -- 9.6 Case Study -- Appendix: Erlang B table -- References -- Chapter 10 Wireless Channel and Interference -- 10.1 Fundamental Propagation Phenomena -- 10.2 Multipath Propagation -- 10.2.1 Large‐Scale Fading -- 10.2.1.1 Path Loss -- 10.2.1.2 Shadowing -- 10.2.2 Small‐Scale Fading -- 10.2.2.1 Characterization of Time‐Varying Channels -- 10.2.2.2 Rayleigh and Rician Fading Distributions -- 10.2.3 Time, Frequency and Angular Domains Characteristics of Multipath Channel -- 10.2.3.1 Delay Spread -- 10.2.3.2 Angular Spread -- 10.2.3.3 Doppler Spread -- 10.2.4 Novel Channel Characteristics in the 5G Technology -- 10.3 Channel as a Source of Interference -- 10.3.1 Interference due to Large‐Scale Fading -- 10.3.1.1 Cellular Systems and CoChannel Interference -- 10.3.1.2 Cochannel Interference Control via Resource Assignment -- 10.3.2 Interference due to Small‐Scale Fading -- 10.4 Channel Modeling -- 10.4.1 Analytical Channel Models -- 10.4.1.1 Correlation‐based Models -- 10.4.1.2 Propagation‐Motivated Models -- 10.4.2 Physical Models -- 10.4.2.1 Deterministic Model -- 10.4.2.2 Geometry‐based Stochastic Model -- 10.4.2.3 Nongeometry‐based Stochastic Models -- 10.4.3 3GPP 5G Channel Models -- 10.4.3.1 Tapped Delay Line (TDL) Model -- 10.4.3.2 Clustered Delay Line (CDL) Model -- 10.4.3.3 Generating Channel Coefficients Using CDL Model -- 10.4.4 Role of Artificial Intelligence (AI) in Channel Modeling -- 10.5 Channel Measurement -- 10.5.1 Frequency Domain Channel Sounder.
10.5.1.1 Swept Frequency/Chirp Sounder.
Sommario/riassunto: "This book describes wireless communication systems and concepts from modeling, simulation, testing, and wireless systems analyzing (along with wireless circuits) using modern instrumentation and computer aided design software. Readers learn how to model, simulate, test, and analyze wireless systems (along with wireless circuits) using modern instrumentation and computer aided design software. The book is structured in such a way that it can be used in support of various wireless courses at all levels and can serve as a reference for research projects for both undergraduate and graduate students. This book complements traditional theoretical textbooks by also introducing some practical aspects"--
Titolo autorizzato: Wireless communication signals  Visualizza cluster
ISBN: 1-119-76443-2
1-119-76444-0
1-119-76442-4
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910830809503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui