Vai al contenuto principale della pagina
| Autore: |
Peláez José Ángel
|
| Titolo: |
Weighted Bergman spaces induced by rapidly increasing weights / / José Ángel Peláez, Jouni Rättyä
|
| Pubblicazione: | Providence, Rhode Island : , : American Mathematical Society, , 2013 |
| ©2013 | |
| Descrizione fisica: | 1 online resource (136 p.) |
| Disciplina: | 515.98 |
| Soggetto topico: | Bergman spaces |
| Functions of several complex variables | |
| Integral operators | |
| Persona (resp. second.): | RättyäJouni <1975-> |
| Note generali: | "Volume 227, Number 1066 (second of 4 numbers)." |
| Nota di bibliografia: | Includes bibliographical references and index. |
| Nota di contenuto: | ""3.2. Zeros of functions in ^{ }_{ }""""3.3. Zeros of functions in the Bergman-Nevanlinna class \mathit{ }_{ }""; ""Chapter 4. Integral Operators and Equivalent Norms""; ""4.1. Equivalent norms on ^{ }_{ }""; ""4.2. Integral operator _{ } on the weighted Bergman space ^{ }_{ }""; ""4.3. Integral operator _{ } on the Hardy space ^{ }""; ""Chapter 5. Non-conformally Invariant Space Induced by _{ } on ^{ }_{\om}""; ""5.1. Inclusion relations""; ""5.2. Structural properties of ¹( ^{â??})"" |
| ""Chapter 6. Schatten Classes of the Integral Operator _{ } on ²_{\om}""""6.1. Preliminary results""; ""6.2. Proofs of the main results""; ""Chapter 7. Applications to Differential Equations""; ""7.1. Solutions in the weighted Bergman space ^{ }_{ }""; ""7.2. Solutions in the Bergman-Nevanlinna class \mathit{ }_{ }""; ""Chapter 8. Further Discussion""; ""8.1. Carleson measures""; ""8.2. Generalized area operators""; ""8.3. Growth and oscillation of solutions""; ""8.4. Zero distribution""; ""Bibliography""; ""Index"" | |
| Titolo autorizzato: | Weighted Bergman spaces induced by rapidly increasing weights ![]() |
| ISBN: | 1-4704-1427-9 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910827625903321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |