Vai al contenuto principale della pagina

Virtual Reality Technology



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Burdea Grigore C Visualizza persona
Titolo: Virtual Reality Technology Visualizza cluster
Pubblicazione: Newark : , : John Wiley & Sons, Incorporated, , 2024
©2024
Edizione: 3rd ed.
Descrizione fisica: 1 online resource (739 pages)
Disciplina: 006
Soggetto topico: Virtual reality
Human-computer interaction
Altri autori: CoiffetPhilippe  
Nota di contenuto: Cover -- Series Page -- Title Pager -- Copyright Page -- Dedication Page -- Contents -- About the Authors -- Foreword by Distinguished Professor Henry Fuchs -- Preface to the 3rd Edition -- About the Companion Instructor Website -- Chapter 1 Introduction -- 1.1 The Three Is of Virtual Reality -- 1.2 Early VR -- 1.3 First Commercial VR -- 1.4 VR at the Turn of the Millennium -- 1.5 VR in the 21st Century -- 1.6 Components of Classical and Modern VR Systems -- 1.7 Review Questions -- References -- Chapter 2 Input Devices: Trackers, Navigation, Gesture, and Neural Interfaces -- 2.1 Three- Dimensional Position Trackers -- 2.1.1 Tracker Performance Parameters -- 2.1.2 Electromagnetic Trackers -- 2.1.2.1 Trackers Using Alternating Current (AC) Magnetic Fields -- 2.1.2.2 Trackers Using Direct Current (DC) Magnetic Fields -- 2.1.2.3 Comparison of AC and DC Magnetic Trackers Accuracy Degradation -- 2.1.3 Optical Trackers -- 2.1.3.1 Passive Camera- Based Optical Trackers -- 2.1.3.2 Active Camera- Based Optical Trackers -- 2.1.3.3 Time- of- Flight Optical Trackers -- 2.1.3.4 Consumer- Grade Optical Trackers -- 2.1.3.5 Inside- Looking- Out Optical Trackers -- 2.1.3.6 The Quest 2 HMD Optical Tracker -- 2.1.3.7 Eye Trackers for Head- Mounted Displays -- 2.1.4 Optical Tracker Accuracy Degradation -- 2.1.5 Hybrid Inertial Trackers -- 2.1.5.1 Hybrid Inertial- Optical Trackers -- 2.1.6 Global Positioning System Trackers -- 2.2 Navigation and Manipulation Interfaces -- 2.2.1 Desktop Navigation Interfaces -- 2.2.2 Hand- held Navigation and Manipulation Interfaces -- 2.2.2.1 The FlightStick3 -- 2.2.2.2 Game Controllers as Navigation and Manipulation Interfaces -- 2.2.2.3 The VIVE Game Controller -- 2.2.2.4 The Quest Touch Controller -- 2.2.3 Locomotion Interfaces -- 2.2.3.1 The Cybershoes Arcade -- 2.2.3.2 The Omni Treadmill -- 2.3 Gesture Interfaces.
2.3.1 Sensing Gloves -- 2.3.1.1 The 5DT Data Glove Ultra 14 -- 2.3.1.2 The CyberGlove II -- 2.3.1.3 The Cyberglove- HT -- 2.3.2 Natural Hand Tracking -- 2.3.2.1 Natural vs. Sensing Glove- based Hand Tracking -- 2.4 Neural Interfaces -- 2.4.1 External Neural Interfaces -- 2.4.1.1 Research- Grade External Brain-Computer Interface -- 2.4.1.2 Consumer- Grade External Brain-Computer Interface -- 2.4.2 Implanted Neural Interfaces -- 2.5 Conclusions -- 2.6 Review Questions -- References -- Chapter 3 Output Devices: Graphics Displays -- 3.1 The Human Vision System -- 3.2 Graphics Display Characteristics -- 3.3 Display Technologies -- 3.3.1 Displays Using LCD Technology -- 3.3.2 Displays Using OLED Technology -- 3.4 Personal Graphics Displays -- 3.4.1 Smartphones as VR Displays -- 3.4.1.1 Casting -- 3.4.1.2 Smartphones as Input Interfaces -- 3.4.1.3 Smartphone Use in HMDs -- 3.4.2 Head- Mounted Displays -- 3.4.2.1 Fixed- Resolution HMD Optics -- 3.4.2.2 Foveated HMD Optics -- 3.4.2.3 HMDs Weight and Weight Distribution -- 3.4.2.4 The FOVE 0 HMD -- 3.4.2.5 The Meta Quest 2 HMD -- 3.4.2.6 The HTC VIVE Focus 3 HMD -- 3.4.2.7 The Pimax Vision 8K X HMD -- 3.4.3 Desk- Supported Personal Displays -- 3.4.3.1 Autostereoscopic Monitors -- 3.4.3.2 3D Monitors -- 3.5 Large- Volume Displays -- 3.5.1 Liquid Crystal Tiled Large- Volume Displays -- 3.5.1.1 Tiled Wall Displays -- 3.5.1.2 Tiled CAVE Displays -- 3.5.2 Projector- Based Large- Volume Displays -- 3.5.2.1 Dome- Type Large- Volume Displays -- 3.5.2.2 Tiled Display Scene Continuity -- 3.6 Micro- LED Walls and Holographic Displays -- 3.6.1 Micro- LED Walls -- 3.6.2 Holographic Displays -- 3.7 Conclusions -- 3.8 Review Questions -- References -- Chapter 4 Output Devices: Three- Dimensional Sound, Haptic, and Olfactory Displays -- 4.1 Three- Dimensional Sound Displays -- 4.1.1 Localized vs. Nonlocalized Sound.
4.1.2 The Human Auditory System -- 4.1.2.1 The Vertical- Polar System of Coordinates -- 4.1.3 Head- Related Transfer Function -- 4.1.4 Generic Convolvotron Architecture -- 4.1.5 Spatialized Sound for All- in- One HMDs -- 4.1.6 Speaker- Based 3D Sound -- 4.1.7 Wearable Sound Interfaces -- 4.2 Haptic Displays -- 4.2.1 The Human Haptic System -- 4.2.1.1 Human Haptic Sensing System -- 4.2.1.2 Human Sensory- Motor Control -- 4.2.2 Tactile Feedback Interfaces -- 4.2.2.1 The CyberTouch II Glove -- 4.2.2.2 The HaptX Gloves G1 Touch Feedback Wearable System -- 4.2.2.3 The TactSuit X Whole Body Tactile Feedback -- 4.2.2.4 Temperature Feedback Interfaces -- 4.2.3 Force Feedback Interfaces -- 4.2.3.1 The Touch X Arm -- 4.2.3.2 The Delta.3 Force Feedback Arm -- 4.2.3.3 The ArmeoPower -- 4.2.3.4 SenseGlove Nova Force Feedback Glove -- 4.3 Olfactory Displays -- 4.3.1 The Human Olfactory System -- 4.3.2 Olfactory Systems for Virtual Reality -- 4.3.2.1 Ambient Olfactory Displays -- 4.3.2.2 Air Cannon- Based Olfactory Display -- 4.3.2.3 Wearable Olfactory Displays -- 4.4 Conclusions -- 4.5 Review Questions -- References -- Chapter 5 Computing Architectures for Virtual Reality -- 5.1 The Rendering Pipeline -- 5.1.1 The Graphics Rendering Pipeline -- 5.1.1.1 Traditional Graphics Rendering Pipeline -- 5.1.1.2 Modern Graphics Rendering Pipeline -- 5.1.2 The Haptic Rendering Pipeline -- 5.2 Gaming Desktop Architectures -- 5.2.1 The 12th Generation Core CPU and Chip Set -- 5.2.2 Cooling of Gaming PCs -- 5.2.3 Graphics Accelerator Cards for PCs -- 5.2.3.1 The NVIDIA GTX 1080 Founder's Edition Graphics Card -- 5.2.3.2 The NVIDIA GeForce RTX 4090 Graphics Card -- 5.3 Graphics Benchmarks -- 5.3.1 Games as Benchmarks -- 5.3.2 The SPECviewperf 2020 Benchmarks -- 5.3.3 A Frame Capture Analysis Tool for Virtual Reality -- 5.4 Distributed VR Architectures -- 5.4.1 Split Rendering.
5.4.2 Colocated Rendering Pipelines -- 5.4.3 Multi- pipeline Synchronization -- 5.4.3.1 Synchronization of Haptic and Graphics Pipelines -- 5.4.3.2 Synchronization of Colocated Graphics Pipelines -- 5.4.3.3 Pipeline Synchronization Using the NVIDIA Quadro Sync II Card -- 5.4.4 Cloud Rendering -- 5.4.4.1 A Cloud Rendering Architecture Example -- 5.4.4.2 Cloud Rendering Latency -- 5.5 Conclusions -- 5.6 Review Questions -- References -- Chapter 6 Modeling Virtual Environments -- 6.1 Geometric Modeling -- 6.1.1 Virtual Object Shape -- 6.1.1.1 Using a 3D Authoring Software -- 6.1.1.2 Importing CAD Files -- 6.1.1.3 Creating Surfaces with 3D Scanners -- 6.1.1.4 Using Online 3D Object Databases -- 6.1.2 Object Visual Appearance -- 6.1.2.1 Scene Illumination -- 6.1.2.2 Texture Mapping -- 6.2 Kinematics Modeling -- 6.2.1 Homogeneous Transformation Matrices -- 6.2.2 Object Position -- 6.2.3 Transformation Invariants -- 6.2.4 Object Hierarchies -- 6.2.5 Viewing the 3D World -- 6.3 Physical Modeling -- 6.3.1 Collision Detection -- 6.3.1.1 Collision Detection for Large Virtual Environments -- 6.3.2 Collision Response Involving Object Surfaces -- 6.3.2.1 Topology- Preserving Collision Response -- 6.3.2.2 Topology- Altering Collision Response -- 6.3.3 Contact Force Modeling -- 6.3.3.1 Contact Forces When Deforming Elastic Objects -- 6.3.3.2 Contact Forces When Deforming Plastic Objects -- 6.3.3.3 Contact Forces When Interacting with Virtual Walls -- 6.3.4 Force Smoothing and Mapping -- 6.3.5 Haptic Texturing -- 6.3.5.1 Haptic Textures Produced by Nonwearable Interfaces -- 6.3.5.2 Haptic Textures Produced by Wearable Interfaces -- 6.4 Behavior Modeling -- 6.4.1 Simple Behavior Models -- 6.4.2 Enhanced Behavior Models -- 6.4.3 Crowd Behavior Models -- 6.5 Model Management -- 6.5.1 Level- of- Detail Management -- 6.5.1.1 Discrete Level- of- Detail Management.
6.5.1.2 Continuous Level- of- Detail Management -- 6.5.1.3 Adaptive Level- of- Detail Management Using Foveated Rendering -- 6.5.1.4 Adaptive Level- of- Detail Management Guaranteeing Frame Time -- 6.5.2 Cell Segmentation -- 6.5.2.1 Automatic Cell Segmentation -- 6.5.2.2 3D Cell Segmentation -- 6.6 Conclusions -- 6.7 Review Questions -- References -- Chapter 7 Virtual Reality Programming -- 7.1 Scene Graphs and Toolkits -- 7.1.1 Scene Graphs -- 7.1.1.1 Internal Scene Graphs -- 7.1.1.2 Distributed Scene Graphs -- 7.2 Toolkits -- 7.2.1 Java3D -- 7.2.1.1 Java 3D Model Geometry and Appearance -- 7.2.1.2 Java3D Scene Graph -- 7.2.1.3 Java3D Sensors and Behaviors -- 7.2.1.4 Java3D Networking -- 7.2.2 The Vizard Toolkit -- 7.2.2.1 Vizard Model Geometry and Appearance -- 7.2.2.2 Vizard Scene Graph -- 7.2.2.3 Vizard Sensors and Behaviors -- 7.2.2.4 Vizard Physics Engine -- 7.2.2.5 Vizard OpenHaptics Plug- in -- 7.2.2.6 Vizard Networking -- 7.2.3 The OpenHaptics Toolkit -- 7.2.3.1 OpenHaptics Integration with the Graphics Pipeline -- 7.2.3.2 OpenHaptics QuickHaptics Micro API -- 7.2.3.3 OpenHaptics Haptic Device to Screen Mapping -- 7.2.3.4 OpenHaptics Unity Plugin -- 7.3 Unity 3D Game Engine -- 7.3.1 The Game Engine -- 7.3.2 Game Production Pipeline -- 7.3.2.1 The Pre- production Pipeline Stage -- 7.3.2.2 The Production Pipeline Stage -- 7.3.2.3 The Post- production Pipeline Stage -- 7.3.3 Unity 3D Game Programming -- 7.3.3.1 Creating a New Project in Unity -- 7.3.3.2 The Unity Editor -- 7.3.3.3 Unity Game Objects -- 7.3.3.4 Physics Programming in Unity -- 7.3.3.5 Scripting in Unity -- 7.3.3.6 Artificial Intelligence in Unity Gaming -- 7.4 Conclusions -- 7.5 Review Questions -- References -- Chapter 8 Human Factors in Virtual Reality -- 8.1 Methodology and Technology -- 8.1.1 The Experimental Protocol -- 8.1.2 Institutional Review and Participant Consent.
8.1.3 Data Collection and Analysis.
Sommario/riassunto: This book, 'Virtual Reality Technology', authored by Grigore C. Burdea and Philippe Coiffet, provides a comprehensive overview of virtual reality systems and their components. The third edition explores the evolution of virtual reality from its early stages to contemporary developments, detailing input and output devices such as trackers, displays, and interfaces. It examines the human sensory systems involved in VR experiences, including vision, sound, haptics, and olfaction, and discusses the integration of these technologies in VR systems. The book also delves into the computing architectures necessary for VR, rendering pipelines, and benchmarks for assessing VR systems' performance. Aimed at professionals, researchers, and students in the field, it serves as a detailed guide to understanding the technical aspects and applications of virtual reality technology.
Titolo autorizzato: Virtual reality technology  Visualizza cluster
ISBN: 9781119512608
1119512603
9781394306947
1394306946
9781119484653
1119484650
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9911019907203321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui