Vai al contenuto principale della pagina
| Autore: |
Perera Kanishka <1969->
|
| Titolo: |
Topics in critical point theory / / Kanishka Perera, Florida Institute of Technology, Martin Schechter, University of California, Irvine [[electronic resource]]
|
| Pubblicazione: | Cambridge : , : Cambridge University Press, , 2013 |
| Descrizione fisica: | 1 online resource (xi, 157 pages) : digital, PDF file(s) |
| Disciplina: | 514/.74 |
| Soggetto topico: | Fixed point theory |
| Classificazione: | MAT034000 |
| Persona (resp. second.): | SchechterMartin |
| Note generali: | Title from publisher's bibliographic system (viewed on 05 Oct 2015). |
| Nota di bibliografia: | Includes bibliographical references and index. |
| Nota di contenuto: | Morse theory -- Linking -- Applications to semilinear problems -- Fučík spectrum -- Jumping nonlinearities -- Sandwich pairs -- Appendix: Sobolev spaces. |
| Sommario/riassunto: | This book introduces the reader to powerful methods of critical point theory and details successful contemporary approaches to many problems, some of which had proved resistant to attack by older methods. Topics covered include Morse theory, critical groups, the minimax principle, various notions of linking, jumping nonlinearities and the Fučík spectrum in an abstract setting, sandwich pairs and the cohomological index. Applications to semilinear elliptic boundary value problems, p-Laplacian problems and anisotropic systems are given. Written for graduate students and research scientists, the book includes numerous examples and presents more recent developments in the subject to bring the reader up to date with the latest research. |
| Titolo autorizzato: | Topics in critical point theory ![]() |
| ISBN: | 1-107-23734-3 |
| 1-139-85432-1 | |
| 1-139-84051-7 | |
| 1-139-34246-0 | |
| 1-139-84524-1 | |
| 1-139-84288-9 | |
| 1-139-84610-8 | |
| 1-283-83634-3 | |
| 1-139-84169-6 | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910810661303321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |