Vai al contenuto principale della pagina

Topics in Galois Fields / / by Dirk Hachenberger, Dieter Jungnickel



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Hachenberger Dirk Visualizza persona
Titolo: Topics in Galois Fields / / by Dirk Hachenberger, Dieter Jungnickel Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Edizione: 1st ed. 2020.
Descrizione fisica: 1 online resource (XIV, 785 p. 11 illus.)
Disciplina: 512.3
Soggetto topico: Algebraic fields
Polynomials
Algebra
Number theory
Discrete mathematics
Computer science - Mathematics
Field Theory and Polynomials
Number Theory
Discrete Mathematics
Mathematics of Computing
Persona (resp. second.): JungnickelD. <1952->
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Basic Algebraic Structures and Elementary Number Theory -- Basics on Polynomials- Field Extensions and the Basic Theory of Galois Fields -- The Algebraic Closure of a Galois Field -- Irreducible Polynomials over Finite Fields -- Factorization of Univariate Polynomials over Finite Fields -- Matrices over Finite Fields -- Basis Representations and Arithmetics -- Shift Register Sequences -- Characters, Gauss Sums, and the DFT -- Normal Bases and Cyclotomic Modules -- Complete Normal Bases and Generalized Cyclotomic Modules -- Primitive Normal Bases -- Primitive Elements in Affin Hyperplanes -- List of Symbols -- References -- Index.
Sommario/riassunto: This monograph provides a self-contained presentation of the foundations of finite fields, including a detailed treatment of their algebraic closures. It also covers important advanced topics which are not yet found in textbooks: the primitive normal basis theorem, the existence of primitive elements in affine hyperplanes, and the Niederreiter method for factoring polynomials over finite fields. We give streamlined and/or clearer proofs for many fundamental results and treat some classical material in an innovative manner. In particular, we emphasize the interplay between arithmetical and structural results, and we introduce Berlekamp algebras in a novel way which provides a deeper understanding of Berlekamp's celebrated factorization algorithm. The book provides a thorough grounding in finite field theory for graduate students and researchers in mathematics. In view of its emphasis on applicable and computational aspects, it is also useful for readers working ininformation and communication engineering, for instance, in signal processing, coding theory, cryptography or computer science.
Titolo autorizzato: Topics in Galois Fields  Visualizza cluster
ISBN: 3-030-60806-9
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910483665103321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Algorithms and Computation in Mathematics, . 2512-3254 ; ; 29