Vai al contenuto principale della pagina

Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence / / by Nikola K. Kasabov



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Kasabov Nikola K Visualizza persona
Titolo: Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence / / by Nikola K. Kasabov Visualizza cluster
Pubblicazione: Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2019
Edizione: 1st ed. 2019.
Descrizione fisica: 1 online resource (742 pages)
Disciplina: 005.117
Soggetto topico: Computational intelligence
Bioinformatics
Neurosciences
Robotics
Automation
Pattern perception
Nota di bibliografia: Includes bibliographical references and index.
Sommario/riassunto: Spiking neural networks (SNN) are biologically inspired computational models that represent and process information internally as trains of spikes. This monograph book presents the classical theory and applications of SNN, including original author’s contribution to the area. The book introduces for the first time not only deep learning and deep knowledge representation in the human brain and in brain-inspired SNN, but takes that further to develop new types of AI systems, called in the book brain-inspired AI (BI-AI). BI-AI systems are illustrated on: cognitive brain data, including EEG, fMRI and DTI; audio-visual data; brain-computer interfaces; personalized modelling in bio-neuroinformatics; multisensory streaming data modelling in finance, environment and ecology; data compression; neuromorphic hardware implementation. Future directions, such as the integration of multiple modalities, such as quantum-, molecular- and brain information processing, is presented in the last chapter. The book is a research book for postgraduate students, researchers and practitioners across wider areas, including computer and information sciences, engineering, applied mathematics, bio- and neurosciences.
Titolo autorizzato: Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence  Visualizza cluster
ISBN: 3-662-57715-1
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910484709703321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Springer Series on Bio- and Neurosystems, . 2520-8535 ; ; 7