Vai al contenuto principale della pagina

Time Expression and Named Entity Recognition / / by Xiaoshi Zhong, Erik Cambria



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Zhong Xiaoshi Visualizza persona
Titolo: Time Expression and Named Entity Recognition / / by Xiaoshi Zhong, Erik Cambria Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Edizione: 1st ed. 2021.
Descrizione fisica: 1 online resource (113 pages)
Disciplina: 006.35
Soggetto topico: Artificial intelligence
Artificial Intelligence
Persona (resp. second.): CambriaErik
Nota di contenuto: Chapter 1. Introduction -- Chapter 2. Literature Review -- Chapter 3. Data Analysis -- Chapter 4. SynTime: Token Types and Heuristic Rules -- 5. TOMN: Constituent-based Tagging Scheme -- Chapter 6. UGTO: Uncommon Words and Proper Nouns -- Chapter 7. Conclusion and Future Work.
Sommario/riassunto: This book presents a synthetic analysis about the characteristics of time expressions and named entities, and some proposed methods for leveraging these characteristics to recognize time expressions and named entities from unstructured text. For modeling these two kinds of entities, the authors propose a rule-based method that introduces an abstracted layer between the specific words and the rules, and two learning-based methods that define a new type of tagging scheme based on the constituents of the entities, different from conventional position-based tagging schemes that cause the problem of inconsistent tag assignment. The authors also find that the length-frequency of entities follows a family of power-law distributions. This finding opens a door, complementary to the rank-frequency of words, to understand our communicative system in terms of language use.
Titolo autorizzato: Time expression and named entity recognition  Visualizza cluster
ISBN: 3-030-78961-6
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910495347903321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Socio-Affective Computing, . 2509-5714 ; ; 10