Vai al contenuto principale della pagina
| Autore: |
Siburg Karl Friedrich
|
| Titolo: |
The Principle of Least Action in Geometry and Dynamics / / by Karl Friedrich Siburg
|
| Pubblicazione: | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2004 |
| Edizione: | 1st ed. 2004. |
| Descrizione fisica: | 1 online resource (XII, 132 p.) |
| Disciplina: | 530 |
| Soggetto topico: | Dynamics |
| Ergodic theory | |
| Geometry, Differential | |
| Global analysis (Mathematics) | |
| Manifolds (Mathematics) | |
| Dynamical Systems and Ergodic Theory | |
| Differential Geometry | |
| Global Analysis and Analysis on Manifolds | |
| Classificazione: | 37J05 |
| 53D35 | |
| 58E30 | |
| Note generali: | Bibliographic Level Mode of Issuance: Monograph |
| Nota di bibliografia: | Includes bibliographical references and index. |
| Nota di contenuto: | Aubry-Mather Theory -- Mather-Mané Theory -- The Minimal Action and Convex Billiards -- The Minimal Action Near Fixed Points and Invariant Tori -- The Minimal Action and Hofer's Geometry -- The Minimal Action and Symplectic Geometry -- References -- Index. |
| Sommario/riassunto: | New variational methods by Aubry, Mather, and Mane, discovered in the last twenty years, gave deep insight into the dynamics of convex Lagrangian systems. This book shows how this Principle of Least Action appears in a variety of settings (billiards, length spectrum, Hofer geometry, modern symplectic geometry). Thus, topics from modern dynamical systems and modern symplectic geometry are linked in a new and sometimes surprising way. The central object is Mather’s minimal action functional. The level is for graduate students onwards, but also for researchers in any of the subjects touched in the book. |
| Titolo autorizzato: | Principle of least action in geometry and dynamics ![]() |
| ISBN: | 3-540-40985-8 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910144618603321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |