Vai al contenuto principale della pagina
| Autore: |
Mittelstedt Christian
|
| Titolo: |
Structural mechanics in lightweight engineering / / Christian Mittelstedt
|
| Pubblicazione: | Cham, Switzerland : , : Springer, , [2021] |
| ©2021 | |
| Descrizione fisica: | 1 online resource (675 pages) |
| Disciplina: | 624.177 |
| Soggetto topico: | Lightweight construction |
| Structural analysis (Engineering) | |
| Nota di bibliografia: | Includes bibliographical references and index. |
| Nota di contenuto: | Intro -- Preface -- Contents -- 1 Introduction -- 1.1 Definition and Tasks of Lightweight Construction and Engineering -- 1.1.1 Introduction -- 1.1.2 What Is Lightweight Engineering? -- 1.2 Structural Analysis in Lightweight Engineering -- 1.3 Structural Optimization in Lightweight Engineering -- 1.4 Structural Elements in Lightweight Engineering -- 1.5 About the Functionality of an Aircraft Fuselage -- 1.5.1 Main Components of an Aircraft Fuselage -- 1.5.2 Loads and Classification into Structural Elements -- 1.6 Aim and Structure of This Book -- 1.7 Notes on Relevant Literature -- 1.8 A Few Notes on Nomenclature -- References -- Part I Fundamentals -- 2 Theory of Elasticity -- 2.1 Introduction -- 2.2 State of Stress -- 2.2.1 Stress Vector and Stress Tensor -- 2.2.2 Stress Transformation -- 2.2.3 Principal Stresses, Invariants, Mohr's Circles -- 2.2.4 Decomposition of the Stress Tensor -- 2.2.5 Equilibrium Conditions -- 2.3 Deformations and Strains -- 2.3.1 Introduction -- 2.3.2 Green-Lagrange Strain Tensor -- 2.3.3 Von-Kármán Strains -- 2.3.4 Infinitesimal Strain Tensor -- 2.3.5 Compatibility Conditions -- 2.3.6 Volume Strain -- 2.3.7 Decomposition of the Infinitesimal Strain Tensor -- 2.4 Constitutive Equations -- 2.4.1 Introduction -- 2.4.2 Hooke's Generalized Law -- 2.4.3 Strain Energy -- 2.4.4 Complementary Strain Energy -- 2.5 Boundary Value Problems -- 2.6 Material Symmetries -- 2.6.1 Full Anisotropy -- 2.6.2 Monotropy -- 2.6.3 Orthogonal Anisotropy/Orthotropy -- 2.6.4 Transverse Isotropy -- 2.6.5 Isotropy -- 2.6.6 Engineering Constants -- 2.6.7 Value Ranges for the Material Parameters -- 2.6.8 Alternative Representation of Isotropic Materials -- 2.7 Transformation Rules -- 2.8 Hygrothermal Problems -- 2.9 Cylindrical Coordinates -- References -- 3 Plane Problems -- 3.1 Introduction -- 3.2 Surface Structures. |
| 3.2.1 Plane Surface Structures: Disks and Plates -- 3.2.2 Curved Surface Structures: Shells -- 3.3 Plane State of Strain -- 3.4 Plane State of Stress -- 3.5 Stress Transformation -- 3.5.1 Introduction -- 3.5.2 Principal Stresses -- 3.5.3 Mohr's Circle -- 3.6 Strain Transformation -- 3.7 Formulation for Orthotropic Materials -- 3.7.1 Plane State of Stress -- 3.7.2 Plane State of Strain -- 3.8 Formulation for Polar Coordinates -- Bibliography -- 4 Strength Criteria for Isotropic Materials -- 4.1 Introduction -- 4.2 Principal Stress Hypothesis -- 4.3 Principal Strain Hypothesis -- 4.4 Beltrami Strain Energy Hypothesis -- 4.5 Von Mises Strain Energy Hypothesis -- 4.6 Tresca Yield Criterion -- 4.7 Coulomb-Mohr Hypothesis -- 4.8 Drucker-Prager Hypothesis -- 4.9 Cuntze's Failure Mode Concept -- Bibliography -- Part II Thin-Walled Beam Structures -- 5 Beams Under Normal Forces and Bending Moments -- 5.1 Introduction -- 5.2 Basic Equations for an Arbitrary Reference System -- 5.3 First Cross-Sectional Normalization: Center of Gravity S -- 5.4 Second Cross-Sectional Normalization: Principal Axes -- 5.5 Selected Basic Cases -- 5.6 Analysis of Arbitrarily Segmented Cross-Sections -- 5.7 Calculation of Beam Deflections -- 5.8 Rod Structures -- Bibliography -- 6 Beams Under Transverse Shear Forces -- 6.1 Introduction -- 6.2 Shear Stresses in Open Cross-Sections -- 6.2.1 Basic Equations -- 6.2.2 Simplified Analysis of an I-Cross-Section -- 6.2.3 Unit Shear Flow -- 6.3 Shear Stresses in Closed Cross-Sections -- 6.3.1 Single-Cell Cross-Sections -- 6.3.2 Multi-Cell Cross-Sections -- 6.3.3 Mixed Cross-Sections -- 6.3.4 Use of Symmetry Properties -- 6.4 Shear Center -- 6.4.1 Open Cross-Sections -- 6.4.2 Closed Cross-Sections -- Bibliography -- 7 St. Venant Torsion -- 7.1 Introduction -- 7.2 Assumptions and Constitutive Law. | |
| 7.3 Arbitrary Thin-Walled Hollow Cross-Sections -- 7.4 Open Thin-Walled Cross Sections -- 7.5 Comparison of Closed and Open Cross-Sections -- 7.6 Multi-cell Cross Sections -- 7.7 Assembled Cross-Sections -- 7.8 Effective Wall Thicknesses -- 7.8.1 Truss Girders -- 7.8.2 Stiffened Box Beams -- 7.9 Determination of Internal Forces -- Bibliography -- 8 Warping Torsion -- 8.1 Introduction -- 8.2 Warping of Open Cross-Sections -- 8.3 Warping of Closed Cross-Sections -- 8.3.1 Single Cell Cross-Sections -- 8.3.2 Multi-cell Cross-Sections -- 8.4 Unit Warping with Respect to the Shear Center -- 8.5 The First-Order Bending-Torsion Problem -- 8.6 Cross-Sectional Normalizations -- 8.6.1 First Cross-Sectional Normalization: Center of Gravity S -- 8.6.2 Second Cross-Sectional Normalization: Principal Axes -- 8.7 Example -- 8.8 Selected Basic Cases -- 8.8.1 Double Symmetrical I-Cross-Section -- 8.8.2 Single Symmetrical I-Cross-Section -- 8.8.3 C-Cross-Section -- 8.8.4 Z-Cross-Section -- 8.9 Determination of Internal Moments -- 8.9.1 Differential Equation of Warping Torsion -- 8.9.2 Selected Basic Cases -- 8.9.3 Influence of Normal Forces -- 8.10 Stress Analysis -- 8.11 Comparison of Open and Closed Cross-Sections -- Bibliography -- Part III Energy Methods -- 9 Work and Energy -- 9.1 Introduction -- 9.2 Work and Energy -- 9.2.1 Fundamentals -- 9.2.2 Internal and External Work -- 9.2.3 Principle of Work and Energy -- 9.3 Strain Energy and Complementary Strain Energy -- 9.3.1 The Rod -- 9.3.2 The Euler-Bernoulli Beam -- 9.3.3 Torsion -- 9.3.4 Combined Loading -- 9.3.5 Generalization for the Continuum -- 9.4 Application of the Principle of Work and Energy to Elastic Deformations -- 9.5 General Principle of Work and Energy of Elastostatics -- Bibliography -- 10 Principle of Virtual Displacements -- 10.1 Introduction -- 10.2 Virtual Displacements and Virtual Works. | |
| 10.3 The Principle of Virtual Displacements -- 10.3.1 Determination of Forces and Moments in Statically Determinate Systems -- 10.3.2 Influence Lines for Forces and Moments in Statically Determinate Systems -- 10.4 Pole Plans and Kinematic Chains -- 10.5 The Variational Operator δ -- 10.6 Formulation for a Continuum -- 10.7 The Rod -- 10.8 The Euler-Bernoulli Beam -- 10.9 Beam Under Torsion -- 10.10 Beam Under Combined Loads -- Bibliography -- 11 Principle of Stationary Value of the Total Elastic Potential -- 11.1 Introduction -- 11.2 Fundamentals of Calculus of Variations -- 11.2.1 Functional with First Order Derivatives -- 11.2.2 Functional with Second Order Derivatives -- 11.2.3 Functional with n-th Order Derivatives -- 11.2.4 Functional with n Functions with First Order Derivatives -- 11.3 Principle of the Stationary Value of the Total Elastic Potential -- 11.3.1 The Rod -- 11.3.2 The Euler-Bernoulli Beam -- 11.3.3 Beam Under Torsion -- 11.3.4 Beam Under Combined Load -- 11.4 First Theorem of Castiglianio -- 11.5 Theorem of Clapeyron -- Bibliography -- 12 Principle of Virtual Forces -- 12.1 Introduction -- 12.2 Virtual Forces and Complementary Virtual Work -- 12.3 The Principle of Virtual Forces -- 12.4 The Unit Load Theorem -- 12.5 The Principle of the Stationary Value of the Elastic Complementary Potential -- 12.6 Second Theorem of Castigliano -- 12.7 Theorem of Menabrea -- 12.8 The Force Method -- 12.8.1 Calculation of Deformations of Statically Determinate Systems -- 12.8.2 Analysis of Simply Statically Indeterminate Systems -- 12.9 Reciprocity Theorems -- 12.9.1 Theorem of Betti -- 12.9.2 Theorem of Maxwell -- 12.10 Calculation of Multiple Statically Indeterminate Systems -- 12.11 Influence Lines for Deformations of Statically Determinate Systems -- 12.12 The Reduction Theorem of Statics -- 12.13 Analysis of Continuous Beams -- Bibliography. | |
| 13 Energy-Based Approximation Methods -- 13.1 Introduction -- 13.2 The Ritz Method -- 13.2.1 The Euler-Bernoulli Beam -- 13.2.2 The Rod -- 13.2.3 Torsion -- 13.3 The Galerkin Method -- Bibliography -- 14 The Finite Element Method -- 14.1 Introduction -- 14.2 Finite Elements for Plane Trusses -- 14.2.1 Element Formulation and Calculation Steps -- 14.2.2 Statically Indeterminate Trusses -- 14.2.3 Examples -- 14.3 Finite Elements for Plane Systems of Straight Rods -- 14.3.1 The Two-Noded Rod Element -- 14.3.2 The Three-Noded Rod Element -- 14.4 Finite Elements for Plane Systems of Straight Beams -- 14.4.1 The Two-Noded Beam Element -- 14.4.2 Quality of the Solution, Convergence Behavior -- 14.4.3 The Three-Noded Beam Element -- 14.4.4 Comparison Ritz / FEM -- 14.5 Finite Elements for Torsion -- Bibliography -- Part IV Advanced Beam Models -- 15 Shear Field Beams -- 15.1 Introduction -- 15.2 Rectangular Skin Fields -- 15.2.1 Determination of Stiffener Forces and Shear Flows -- 15.2.2 Determination of Deformations -- 15.3 Parallelogram Skin Fields -- 15.4 Trapezoidal Skin Fields -- 15.5 Statically Indeterminate Shear Field Beams -- 15.6 Applications of the Shear Field Beam Model -- 15.6.1 Flexurally Rigid Beam Connections -- 15.6.2 Large Area Stiffened Structures -- 15.6.3 Load Introductions -- 15.6.4 Adhesive Overlap Joints -- References -- 16 The Timoshenko Beam -- 16.1 Introduction -- 16.2 Kinematics and Constitutive Law -- 16.3 Displacements and Stresses -- 16.4 Elementary Examples -- 16.5 Shear Correction Factor K -- 16.6 Energetic Consideration -- 16.7 The Force Method -- 16.7.1 Determination of Displacements -- 16.7.2 Statically Indeterminate Systems -- 16.8 The Ritz Method -- 16.9 Finite Beam Element -- References -- 17 Hybrid Beams -- 17.1 Introduction -- 17.2 Beams Under Normal Forces and Bending Moments. | |
| 17.2.1 Basic Equations for an Arbitrary Reference System. | |
| Titolo autorizzato: | Structural Mechanics in Lightweight Engineering ![]() |
| ISBN: | 3-030-75193-7 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910488704703321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |