Vai al contenuto principale della pagina

Stationary Diffraction by Wedges : Method of Automorphic Functions on Complex Characteristics / / by Alexander Komech, Anatoli Merzon



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Komech Alexander Visualizza persona
Titolo: Stationary Diffraction by Wedges : Method of Automorphic Functions on Complex Characteristics / / by Alexander Komech, Anatoli Merzon Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Edizione: 1st ed. 2019.
Descrizione fisica: 1 online resource (XI, 167 p. 19 illus., 3 illus. in color.)
Disciplina: 515.35
Soggetto topico: Mathematical physics
Differential equations
Functions of complex variables
Fourier analysis
Mathematical Physics
Differential Equations
Functions of a Complex Variable
Fourier Analysis
Persona (resp. second.): MerzonAnatoli
Nota di bibliografia: Includes bibliographical references and index.
Sommario/riassunto: This book presents a new and original method for the solution of boundary value problems in angles for second-order elliptic equations with constant coefficients and arbitrary boundary operators. This method turns out to be applicable to many different areas of mathematical physics, in particular to diffraction problems in angles and to the study of trapped modes on a sloping beach. Giving the reader the opportunity to master the techniques of the modern theory of diffraction, the book introduces methods of distributions, complex Fourier transforms, pseudo-differential operators, Riemann surfaces, automorphic functions, and the Riemann–Hilbert problem. The book will be useful for students, postgraduates and specialists interested in the application of modern mathematics to wave propagation and diffraction problems.
Titolo autorizzato: Stationary Diffraction by Wedges  Visualizza cluster
ISBN: 3-030-26699-0
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910349335703321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Lecture Notes in Mathematics, . 1617-9692 ; ; 2249