Vai al contenuto principale della pagina

Stability enhancement methods of inverters based on Lyapunov function, predictive control, and reinforcement learning / / Xin Zhang [and three others]



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Zhang Xin Visualizza persona
Titolo: Stability enhancement methods of inverters based on Lyapunov function, predictive control, and reinforcement learning / / Xin Zhang [and three others] Visualizza cluster
Pubblicazione: Singapore : , : Springer, , [2023]
©2023
Descrizione fisica: 1 online resource (175 pages)
Disciplina: 262
Soggetto topico: Lyapunov functions
Nota di bibliografia: Includes bibliographical references.
Nota di contenuto: Intro -- Preface -- Contents -- About the Authors -- 1 Introduction -- 1.1 Significance of DG in MGs -- 1.2 Categories of MGs -- 1.2.1 AC MG -- 1.2.2 DC MG -- 1.2.3 Hybrid MG -- 1.3 The Cornerstone of MGs: Power Inverters -- 1.3.1 Grid-Connected Inverters: L or LCL Filtered Inverters -- 1.3.2 Standalone Inverters: LC-Filtered Inverter -- 1.3.3 Grid-Connected and Standalone Inverters Cascaded with LC Input Filters -- 1.4 The Necessity of Large-Signal Stability Analysis in Control of Inverters -- 1.4.1 Stability Problems of Inverters and the Existing Small-Signal Stability Analysis -- 1.4.2 The Necessity of Large-Signal Stability Analysis -- 1.4.3 Existing Large-Signal Stability Analysis of Inverters Via Lyapunov's Theory -- 1.4.4 The Motivation of This Book: Advanced Control Strategies for the Power Inverter to Improve Its Large-Signal Stability -- References -- 2 Adaptive Backstepping Current Control of Single-Phase LCL-Grid-Connected Inverters to Improve Its Large-Signal Stability in the Presence of Parasitic Resistance Uncertainty -- 2.1 Introduction -- 2.2 Mathematical Modelling -- 2.3 Derivation of Proposed Control Scheme -- 2.3.1 Step I: Derivation of Pseudo Reference x2ref(t) and Adaptive Law 1 -- 2.3.2 Step II: Derivation of Pseudo Reference x3ref(t) and Adaptive Law 2 -- 2.3.3 Step III: Derivation of Control Law µ(t) and Adaptive Law 3 -- 2.4 Test Results -- 2.5 Conclusion -- References -- 3 An Adaptive Dual-Loop Lyapunov-Based Control Scheme for a Single-Phase Stand-Alone Inverter to Improve Its Large-Signal Stability -- 3.1 Introduction -- 3.2 Mathematical Modelling -- 3.2.1 Average Model of the Investigated System -- 3.2.2 Load Voltage Reference -- 3.2.3 Current-Loop Reference -- 3.2.4 Model of the Load Current -- 3.3 Proposed Adaptive Dual-Loop Lyapunov-Based Control Scheme -- 3.3.1 The Proposed Lyapunov Function.
3.3.2 Derivation of the Adaptive Dual-Loop Control Law -- 3.3.3 Implementation of Proposed Control Scheme -- 3.4 Stability Analysis and Robustness Verification -- 3.4.1 Stability Analysis -- 3.4.2 Robustness Against Plant Parametric Variations -- 3.5 Test Results -- 3.5.1 Steady-State and Dynamic Performance Evaluation -- 3.5.2 Overload and Recovery Scenario -- 3.6 Conclusion -- References -- 4 Lyapunov-Based Control of Three-Phase Stand-Alone Inverters to Improve Its Large-Signal Stability with Inherent Dual Control Loops and Load Disturbance Adaptivity -- 4.1 Introduction -- 4.2 Preliminary of the Proposed Adaptive Dual-Loop Lyapunov-Based Control: Mathematical Modelling -- 4.2.1 Average Model of the Investigated System -- 4.2.2 Load Voltage References vodref, voqref, and Inductor Current References iLdref, iLqref -- 4.2.3 Model of the Load Currents and Proposed Adaptive Laws -- 4.2.4 Modified Inductor Current References iLdref, iLqref Incorporated with Adaptive Laws -- 4.3 Derivation of Proposed Adaptive Decoupled Dual-Loop Lyapunov-Based Control Scheme -- 4.3.1 Proposed Weighted All-in-One Lyapunov Function V -- 4.3.2 Derivation of the Switching Functions and Adaptive Laws -- 4.4 Implementation of Proposed Control Scheme and Its Resulted dq Decoupled Error Dynamics -- 4.4.1 Block Diagram of the Proposed Control Scheme -- 4.4.2 Decoupled Error Dynamics in d Frame and q Frame -- 4.4.3 Recommended Way to Set Load Voltage References -- 4.5 Stability Analysis and Controller Design Guidelines -- 4.5.1 Closed-Loop System Stability Proof -- 4.5.2 Power Loss Analysis, Switching Frequency (fs) Selection and Output LC Filter Design -- 4.5.3 Controller Gains Selection Via Poles Placement -- 4.6 Test Results -- 4.6.1 Performance of Proposed Approach -- 4.6.2 Comparisons Between the Proposed Approach and Existing Control Schemes -- 4.7 Conclusion -- References.
5 An Ellipse-Optimized Composite Backstepping Control Strategy for a Point-of-Load Inverter to Improve Its Large-Signal Stability Under Load Disturbance in the Shipboard Power System -- 5.1 Introduction -- 5.2 Preliminary of the Ellipse-Optimized Composite Backstepping Controller: Mathematical Modelling -- 5.2.1 Dynamic Equations of the Investigated POL Inverter -- 5.2.2 Control Objectives: Load Voltage References x1*, x3* -- 5.3 Recursive Derivation and Implementation of the Proposed Composite Backstepping Controller -- 5.3.1 Two-Step Backstepping Derivation in d Frame -- 5.3.2 Two-Step Backstepping Derivation in q Frame -- 5.3.3 Design of the Kalman Filter to Estimate and Feedforward the Load Currents for Load Disturbance Rejection -- 5.3.4 Implementation of the Proposed Composite Backstepping Controller with a Kalman Filter -- 5.4 Ellipse-Based Controller Gains Optimization, Feedback Gains Matrix Selection, and Robustness Analysis -- 5.4.1 Proposed Intuitive Ellipse-Based Strategy to Optimize the Controller Parameters with Fully Consideration of ξ and ωn -- 5.4.2 Quantitative Selection of the Feedback Gain Matrix G of the Kalman Filter Aided by Ellipse-Optimized Strategy -- 5.4.3 Robustness Analysis of the Proposed Control Scheme Under Parametric Variations and Measurement Errors -- 5.5 Test Results -- 5.5.1 Effectiveness of the Proposed Ellipse-Optimized Controller Gains Selection Strategy -- 5.5.2 Robustness Tests Under Plant Parametric Variations -- 5.5.3 Performance Evaluation Under Linear/Nonlinear Load Step, Reference Step, Overload and Recovery -- 5.5.4 Comparisons Between Existing Lyapunov-Based Approaches and the Proposed Control Scheme -- 5.6 Conclusion -- References -- 6 Stability Constraining Dichotomy Solution Based Model Predictive Control for the Three Phase Inverter Cascaded with Input EMI Filter in the MEA -- 6.1 Introduction.
6.2 Instability Problem of the Researched AC Cascaded System in MEA -- 6.2.1 Instability Problem Description -- 6.2.2 The Instability Reason of CPL with LC Input Filter -- 6.3 Preliminary of the SCDS-MPC Method: Mathematical Modeling of the Researched AC Cascaded System in MEA -- 6.3.1 Conventional Inverter Mathematical Model -- 6.3.2 Improved Mathematical Model with Consideration of the Inverter and Input EMI Filter for Stability Analysis -- 6.4 The Proposed SCDS-MPC Method -- 6.4.1 Conventional Model Predictive Control Scheme -- 6.4.2 Proposed Dichotomy Solution (DS) Based Model Predictive Control -- 6.4.3 Proposed System Stability Constraining Cost Function Definition -- 6.4.4 Sensitivity Analysis of Model Parameters Variation -- 6.5 Test Results -- 6.6 Conclusion -- References -- 7 Composite-Bisection Predictive Control to Stabilize the Three Phase Inverter Cascaded with Input EMI Filter in the SPS -- 7.1 Introduction -- 7.2 Mathematical Modeling -- 7.3 Conventional FCS MPC and Problem Formulation -- 7.4 Proposed Composite Bisection Predictive Control -- 7.4.1 Structure of the Proposed CB-PC Scheme -- 7.4.2 Improved Generic DC-Link Stabilization Strategy Based on Instantaneous Power Theory -- 7.4.3 Indirect Voltage Control Strategy to Achieve Better Transient Response Inspired by the Deadbeat Control -- 7.4.4 Modified Bisection Algorithm -- 7.5 Test Results -- 7.5.1 Effectiveness of the Improved Generic Stabilization Method -- 7.5.2 Transient Performance of the Indirect Voltage Control in Comparison with the Existing Direct Voltage Control -- 7.5.3 Performance of the Proposed CB-PC Under Droop-Akin Strategy With/Without Delay Compensation -- 7.5.4 Comparisons Between the Proposed CB-PC and Existing MPC -- 7.6 Conclusion -- References.
8 Reinforcement Learning Based Weighting Factors' Real-Time Updating Scheme for the FCS Model Predictive Control to Improve the Large-Signal Stability of Inverters -- 8.1 Introduction -- 8.2 Weighting Factors Selection in FCS MPC Affects System Stability -- 8.2.1 Particular Case: WFstability Selection is a Trade-Off Between DC-Link Stabilization and Load Voltage Tracking -- 8.2.2 Generalized Case: WFs Selection Affects System Stability (WFstability in Particular) -- 8.3 WFs' Real-Time Updaing Via the Reinforcement Learning-Based Approach to Improve System Stability -- 8.3.1 Structure of the Proposed Approach -- 8.3.2 RL Agent and Its Selection -- 8.3.3 RL-Based Approach Using a DDPG Agent and Artificial Neural Networks -- 8.4 Verification on the Particular Case: Improving Tracking Accuracy While Ensuring DC-Link Stabilization -- 8.4.1 Configuration of the Observation, Reward, and ANN -- 8.4.2 Parameter Settings and Training Results -- 8.4.3 Test Results -- 8.5 Conclusion -- References.
Titolo autorizzato: Stability enhancement methods of inverters based on Lyapunov function, predictive control, and reinforcement learning  Visualizza cluster
ISBN: 981-19-7191-9
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910633931703321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui