Vai al contenuto principale della pagina

Sparse estimation with math and R : 100 exercises for building logic / / Joe Suzuki



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Suzuki Joe Visualizza persona
Titolo: Sparse estimation with math and R : 100 exercises for building logic / / Joe Suzuki Visualizza cluster
Pubblicazione: Singapore : , : Springer, , [2021]
©2021
Edizione: 1st ed. 2021.
Descrizione fisica: 1 online resource (X, 234 p. 54 illus., 46 illus. in color.)
Disciplina: 519.535
Soggetto topico: Multivariate analysis
Nota di bibliografia: Includes bibliographical references.
Nota di contenuto: Chapter 1: Linear Regression -- Chapter 2: Generalized Linear Regression -- Chapter 3: Group Lasso -- Chapter 4: Fused Lasso -- Chapter 5: Graphical Model -- Chapter 6: Matrix Decomposition -- Chapter 7: Multivariate Analysis.
Sommario/riassunto: The most crucial ability for machine learning and data science is mathematical logic for grasping their essence rather than knowledge and experience. This textbook approaches the essence of sparse estimation by considering math problems and building R programs. Each chapter introduces the notion of sparsity and provides procedures followed by mathematical derivations and source programs with examples of execution. To maximize readers’ insights into sparsity, mathematical proofs are presented for almost all propositions, and programs are described without depending on any packages. The book is carefully organized to provide the solutions to the exercises in each chapter so that readers can solve the total of 100 exercises by simply following the contents of each chapter. This textbook is suitable for an undergraduate or graduate course consisting of about 15 lectures (90 mins each). Written in an easy-to-follow and self-contained style, this book will also be perfect material for independent learning by data scientists, machine learning engineers, and researchers interested in linear regression, generalized linear lasso, group lasso, fused lasso, graphical models, matrix decomposition, and multivariate analysis.
Titolo autorizzato: Sparse Estimation with Math and R  Visualizza cluster
ISBN: 981-16-1446-6
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 996464405303316
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui