Vai al contenuto principale della pagina

Smoothing Techniques : With Implementation in S / / by Wolfgang Härdle



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Härdle Wolfgang Visualizza persona
Titolo: Smoothing Techniques : With Implementation in S / / by Wolfgang Härdle Visualizza cluster
Pubblicazione: New York, NY : , : Springer New York : , : Imprint : Springer, , 1991
Edizione: 1st ed. 1991.
Descrizione fisica: 1 online resource (XII, 262 p.)
Disciplina: 519
Soggetto topico: Mathematics
Applications of Mathematics
Note generali: "With 87 Illustrations."
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: I. Density Smoothing -- 1. The Histogram -- 2. Kernel Density Estimation -- 3. Further Density Estimators -- 4. Bandwidth Selection in Practice -- II. Regression Smoothing -- 5. Nonparametric Regression -- 6. Bandwidth Selection -- 7. Simultaneous Error Bars -- Tables -- Solutions -- List of Used S Commands -- Symbols and Notation -- References.
Sommario/riassunto: The author has attempted to present a book that provides a non-technical introduction into the area of non-parametric density and regression function estimation. The application of these methods is discussed in terms of the S computing environment. Smoothing in high dimensions faces the problem of data sparseness. A principal feature of smoothing, the averaging of data points in a prescribed neighborhood, is not really practicable in dimensions greater than three if we have just one hundred data points. Additive models provide a way out of this dilemma; but, for their interactiveness and recursiveness, they require highly effective algorithms. For this purpose, the method of WARPing (Weighted Averaging using Rounded Points) is described in great detail.
Titolo autorizzato: Smoothing techniques  Visualizza cluster
ISBN: 1-4612-4432-3
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910958625303321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Springer Series in Statistics, . 2197-568X