Vai al contenuto principale della pagina
| Autore: |
Härdle Wolfgang
|
| Titolo: |
Smoothing Techniques : With Implementation in S / / by Wolfgang Härdle
|
| Pubblicazione: | New York, NY : , : Springer New York : , : Imprint : Springer, , 1991 |
| Edizione: | 1st ed. 1991. |
| Descrizione fisica: | 1 online resource (XII, 262 p.) |
| Disciplina: | 519 |
| Soggetto topico: | Mathematics |
| Applications of Mathematics | |
| Note generali: | "With 87 Illustrations." |
| Nota di bibliografia: | Includes bibliographical references and index. |
| Nota di contenuto: | I. Density Smoothing -- 1. The Histogram -- 2. Kernel Density Estimation -- 3. Further Density Estimators -- 4. Bandwidth Selection in Practice -- II. Regression Smoothing -- 5. Nonparametric Regression -- 6. Bandwidth Selection -- 7. Simultaneous Error Bars -- Tables -- Solutions -- List of Used S Commands -- Symbols and Notation -- References. |
| Sommario/riassunto: | The author has attempted to present a book that provides a non-technical introduction into the area of non-parametric density and regression function estimation. The application of these methods is discussed in terms of the S computing environment. Smoothing in high dimensions faces the problem of data sparseness. A principal feature of smoothing, the averaging of data points in a prescribed neighborhood, is not really practicable in dimensions greater than three if we have just one hundred data points. Additive models provide a way out of this dilemma; but, for their interactiveness and recursiveness, they require highly effective algorithms. For this purpose, the method of WARPing (Weighted Averaging using Rounded Points) is described in great detail. |
| Titolo autorizzato: | Smoothing techniques ![]() |
| ISBN: | 1-4612-4432-3 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910958625303321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |