Vai al contenuto principale della pagina
| Autore: |
Oliveira Tiago Roux
|
| Titolo: |
Sliding-Mode Control and Variable-Structure Systems : The State of the Art
|
| Pubblicazione: | Cham : , : Springer International Publishing AG, , 2023 |
| ©2023 | |
| Edizione: | 1st ed. |
| Descrizione fisica: | 1 online resource (597 pages) |
| Disciplina: | 629.8 |
| Soggetto topico: | Sliding mode control |
| Nonlinear control theory | |
| Altri autori: |
FridmanLeonid
HsuLiu
|
| Nota di contenuto: | Intro -- Preface -- Contents -- Contributors -- List of Figures -- List of Tables -- New Properties of SMC Algorithms -- Generalized Super-Twisting with Robustness to Arbitrary Disturbances: Disturbance-Tailored Super-Twisting (DTST) -- 1 Introduction -- 2 Motivation -- 2.1 Speed Tracking in a Simple Mechanical System -- 2.2 Limitations of STA -- 2.3 Limitations of Existing Generalized Second-Order Algorithms -- 3 Disturbance-Tailored Super-Twisting: The Basics -- 3.1 DTST Equations -- 3.2 DTST Construction and Tuning -- 3.3 DTST Construction Example -- 4 DTST: The Details -- 4.1 Initial Perturbation Bound Requirements -- 4.2 DTST Function Admissibility -- 4.3 Construction Properties -- 4.4 Finiteness of the Function ν2 at 0 -- 5 Robust Stability and Finite-Time Convergence -- 5.1 Global Robust Stability -- 5.2 Finite-Time Convergence -- 6 Conclusions and Future Work -- References -- Prescribed-Time Stabilization and Inverse Optimality for Nonlinear Systems -- 1 Introduction -- 2 Problem Formulation -- 3 Prescribed-Time Controller Design and Stability Analysis -- 3.1 Prescribed-Time Controller Design -- 3.2 Prescribed-Time Stability Analysis -- 4 Prescribed-Time Inverse Optimality -- 5 A Simulation Example -- 6 Concluding Remarks -- References -- Designing Controllers with Predefined Convergence-Time Bound Using Bounded Time-Varying Gains -- 1 Introduction -- 2 Motivating Example -- 3 Preliminaries and Problem Statement -- 3.1 Fixed-Time Stability and Settling-Time Function -- 3.2 Problem Statement -- 4 First-Order Controllers -- 4.1 Prescribed-Time Controllers -- 4.2 Predefined-Time Controllers with Bounded Time-Varying Gains -- 4.3 On Reducing the Energy with Time-Varying Gains -- 4.4 Redesigning Fixed-Time Stabilizing Controllers Using Bounded Time-Varying Gains: The Second-Order Case. |
| 5 Main Result: Arbitrary-Order Predefined-Time Controller -- 5.1 Uniform Lyapunov Stability of Predefined-Time Controllers -- 6 Conclusion -- References -- SMC Observers -- Bi-homogeneous Differentiators -- 1 Introduction and Overview -- 2 Preliminaries -- 3 The Arbitrary Order Differentiator Homogeneous in the Bi-limit -- 3.1 The First-Order Differentiator -- 3.2 The Arbitrary Order Differentiator -- 3.3 Convergence in Absence of Noise -- 3.4 Effect of Noise and the Perturbation δ(t)=-f0(n)(t) -- 4 Lyapunov Function Used for the Stability Analysis -- 4.1 Convergence Time Estimation -- 4.2 Gain Calculation -- 4.3 Acceleration of the Convergence and Scaling of the Lipschitz Constant Δ -- 5 Example: The Bi-homogeneous Second-Order Differentiator -- 6 Conclusions -- References -- On Finite- and Fixed-Time State Estimation for Uncertain Linear Systems -- 1 Introduction -- 1.1 Notation -- 2 Problem Statement -- 3 Homogeneous Observers -- 3.1 Nonlinear Output Injection Design -- 3.2 Design of the Observer Gains -- 4 A Fixed-Time Sliding-Mode Observer -- 4.1 Nonlinear Output Injection Design -- 5 Unknown Input Identification -- 6 Simulation Results -- 6.1 Homogeneous Observers -- 6.2 A Fixed-Time Sliding-Mode Observer -- 6.3 Unknown Input Identification -- 7 Concluding Remarks -- References -- Robust State Estimation for Linear Time-Varying Systems Using High-Order Sliding-Modes Observers -- 1 Introduction -- 2 Problem Statement -- 3 Preliminaries -- 4 Cascade Observer for Linear Time-Varying Strongly Observable Systems -- 4.1 Example -- 5 Non-cascade Observer for Linear Time-Varying Strongly Observable Systems -- 5.1 A Normal Form for Linear Time-Varying Systems with Unknown Inputs -- 5.2 Observer Design -- 5.3 Example -- 6 Conclusions -- References -- Discretization Issues. | |
| Effect of Euler Explicit and Implicit Time Discretizations on Variable-Structure Differentiators -- 1 Introduction -- 2 Continuous-Time AO-STD -- 3 Discretization Schemes -- 3.1 Explicit Discretization -- 3.2 Implicit Discretization -- 4 Open-Loop Numerical Simulations -- 5 Practical Experiments -- 5.1 Mathematical Modeling of the RIPS -- 5.2 Design of the Controller for the RIPS -- 5.3 Results of the Experiments -- 6 Conclusions -- References -- Discrete-Time Implementations of Differentiators Homogeneous in the Bi-Limit -- 1 Introduction -- 2 Differentiator Design via State-Dependent Eigenvalue Placement -- 2.1 Arbitrary-Order Differentiator Homogeneous in the Bi-Limit -- 3 Sliding-Mode Inspired Numerical Differentiation -- 3.1 Semi-implicit Mapped Differentiators -- 3.2 Stable Explicit Euler Discretized Differentiator -- 4 Stability Proof -- 4.1 The Unperturbed Case -- 4.2 The Perturbed Case -- 5 Simulation Study and Conclusion -- 5.1 Numerical Example -- 5.2 Conclusion -- References -- Lyapunov-Based Consistent Discretization of Quasi-continuous High-Order Sliding Modes -- 1 Introduction -- 2 Problem Statement and Preliminaries -- 2.1 Homogeneity -- 2.2 Problem Statement -- 3 Projected Dynamics -- 4 Discretization Scheme -- 5 Examples -- 6 Conclusion -- References -- Low-Chattering Discretization of Sliding Modes -- 1 Introduction -- 2 Discontinuous Dynamic Systems -- 3 Discretization of Filippov Dynamic Systems -- 3.1 Example: Alternative Discretization of Relay Control -- 4 Homogeneous Output Regulation -- 4.1 Differentiation and Filtering Based on SMs -- 4.2 Output Feedback Stabilization in Continuous Time -- 4.3 Output Feedback Stabilization Using Discrete Differentiators -- 5 Low-Chattering Discretization of HOSMs -- 5.1 Low-Chattering Discretization of Differentiators -- 5.2 Low-Chattering Discretization of Higher-Order SMC. | |
| 5.3 Proof Sketch -- 6 Discretization Examples for the Sliding Orders 3, 4 -- 6.1 Discretization of the 3-SM Car Control -- 6.2 Integrator Chain Control, r=4 -- 7 Discretization of the Twisting Controller -- 7.1 Case Study: Targeting -- 7.2 Simulation of Targeting Control -- 8 Conclusions -- References -- Adaptation Methods -- Adaptive Sliding Mode and Higher-Order Sliding-Mode Control Techniques with Applications: A Survey -- 1 Introduction -- 2 Adaptive Sliding-Mode Control (1-ASMC) Techniques -- 3 Applications of Adaptive Sliding-Mode Control (1-ASMC) Techniques -- 4 Adaptive Second-Order Sliding-Mode Control (2-ASMC) Techniques -- 4.1 Adaptive 2-SMC Super-Twisting Control -- 4.2 2-SMC Twisting Control -- 4.3 Other Adaptive 2-SMC Algorithms -- 5 Applications of Adaptive Second-Order Sliding-Mode Control (2-ASMC) Techniques -- 6 Higher-Order Adaptive Sliding-Mode Control (r-ASMC) Techniques -- 7 Applications of Adaptive Higher-Order Sliding-Mode Control (r-ASMC) Techniques -- 8 Conclusions -- References -- Unit Vector Control with Prescribed Performance via Monitoring and Barrier Functions -- 1 Introduction -- 2 Problem Formulation -- 3 Basic Techniques -- 3.1 Norm Observer -- 3.2 Monitoring Function-Reaching Phase -- 3.3 Barrier Function-Residual Phase -- 3.4 Adaptive Unit Vector Control -- 4 Stability Analysis -- 5 Numerical Examples -- 5.1 Academic Example -- 5.2 Application Example -- 6 Conclusion -- References -- Chattering Analysis and Adjustment -- Chattering in Mechanical Systems Under Sliding-Mode Control -- 1 Introduction -- 2 The Chattering Effect and Metrics for Chattering Evaluation -- 3 Analysis and Comparison of Chattering -- 4 Analysis and Comparison of External Signals Propagation -- 5 The Chattering Effect and Metrics for Chattering Evaluation. Dry Friction -- 6 Conclusion -- References. | |
| Describing Function-Based Analysis and Design of Approximated Sliding-Mode Controllers with Reduced Chattering -- 1 Introduction -- 2 Problem Statement -- 3 Describing Function (DF) of Approximated SMC -- 3.1 DF of Saturation Function -- 4 Relative Degree One Systems -- 4.1 First-Order Sliding-Mode Control -- 4.2 Super-Twisting Controller -- 4.3 Quantitative Analysis -- 5 Relative Degree Two Systems -- 5.1 Nested Algorithm -- 5.2 Twisting Algorithm -- 5.3 ST Extension for Relative Degree Two -- 5.4 Quantitative Analysis -- 6 Conclusions -- References -- Applications of SMC -- Blood Glucose Regulation for Type 1 Diabetic Patients at Intensive Care Unit via Continuous Sliding-Mode Algorithms -- 1 Introduction -- 2 Problem Statement -- 3 Preliminaries -- 4 Intravenous Continuous Controllers Based on High-Order Sliding Modes -- 4.1 Super-Twisting Algorithm -- 4.2 Continuous Twisting Algorithm -- 4.3 Continuous Singular Terminal Algorithm -- 4.4 Continuous Nonsingular Terminal Algorithm -- 4.5 Output-Feedback Continuous Twisting Algorithm -- 4.6 Observer Design -- 5 In Silico Simulation Results -- 5.1 Super-Twisting Algorithm -- 5.2 Continuous Twisting Algorithm -- 5.3 Continuous Singular Terminal Algorithm -- 5.4 Continuous Nonsingular Terminal Algorithm -- 5.5 Output-Feedback Continuous-Twisting Algorithm -- 5.6 Standard Open-Loop Protocol at ICU -- 5.7 Discussion -- 6 Conclusions -- References -- A Reduced-Order Model-Based Design of Event-Triggered Sliding-Mode Control -- 1 Introduction -- 2 System Description -- 3 Problem Statement -- 4 Reduced-Order System via Aggregation Technique -- 5 Reduced-Order Event-Triggered SMC -- 5.1 Design of Sliding Manifold -- 5.2 Design of Event-Triggered SMC -- 5.3 Main Result -- 6 Simulation Results -- 7 Conclusion -- References -- A Robust Approach for Fault Diagnosis in Railway Suspension Systems -- 1 Introduction. | |
| 1.1 Predictive Versus Preventive-Benefits and Requirements. | |
| Sommario/riassunto: | This book, 'Sliding-Mode Control and Systems: The State of the Art', is an edited volume that delves into the advanced concepts and methodologies of sliding-mode control (SMC) and variable structure systems (VSS). It discusses the theoretical foundation and practical applications of SMC, highlighting its robustness and efficiency in dealing with uncertain systems. The book is structured into six sections that cover new properties of SMC algorithms, adaptation methods, chattering analysis, and recent developments in VSS theory. It addresses both the advantages and challenges of SMC, such as the chattering phenomenon and the need for adaptation in unknown environments. The book aims to provide comprehensive insights into the design and implementation of SMC systems, making it a valuable resource for researchers, engineers, and practitioners in control systems and related fields. |
| Titolo autorizzato: | Sliding-Mode Control and Variable-Structure Systems ![]() |
| ISBN: | 9783031370892 |
| 3031370899 | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910760277603321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |