Vai al contenuto principale della pagina
| Titolo: |
Semi-supervised learning / / [edited by] Olivier Chapelle, Bernhard Schölkopf, Alexander Zien
|
| Pubblicazione: | Cambridge, Mass., : MIT Press, c2006 |
| Edizione: | 1st ed. |
| Descrizione fisica: | 1 online resource (528 p.) |
| Disciplina: | 006.3/1 |
| Soggetto topico: | Supervised learning (Machine learning) |
| Altri autori: |
ChapelleOlivier
SchölkopfBernhard
ZienAlexander
|
| Note generali: | Description based upon print version of record. |
| Nota di bibliografia: | Includes bibliographical references (p. [479]-497). |
| Nota di contenuto: | Contents; Series Foreword; Preface; 1 - Introduction to Semi-Supervised Learning; 2 - A Taxonomy for Semi-Supervised Learning Methods; 3 - Semi-Supervised Text Classification Using EM; 4 - Risks of Semi-Supervised Learning: How Unlabeled Data Can Degrade Performance of Generative Classifiers; 5 - Probabilistic Semi-Supervised Clustering with Constraints; 6 - Transductive Support Vector Machines; 7 - Semi-Supervised Learning Using Semi- Definite Programming; 8 - Gaussian Processes and the Null-Category Noise Model; 9 - Entropy Regularization; 10 - Data-Dependent Regularization |
| 11 - Label Propagation and Quadratic Criterion12 - The Geometric Basis of Semi-Supervised Learning; 13 - Discrete Regularization; 14 - Semi-Supervised Learning with Conditional Harmonic Mixing; 15 - Graph Kernels by Spectral Transforms; 16- Spectral Methods for Dimensionality Reduction; 17 - Modifying Distances; 18 - Large-Scale Algorithms; 19 - Semi-Supervised Protein Classification Using Cluster Kernels; 20 - Prediction of Protein Function from Networks; 21 - Analysis of Benchmarks; 22 - An Augmented PAC Model for Semi- Supervised Learning | |
| 23 - Metric-Based Approaches for Semi- Supervised Regression and Classification24 - Transductive Inference and Semi-Supervised Learning; 25 - A Discussion of Semi-Supervised Learning and Transduction; References; Notation and Symbols; Contributors; Index | |
| Sommario/riassunto: | A comprehensive review of an area of machine learning that deals with the use of unlabeled data in classification problems, this text looks at state-of-the-art algorithms, applications benchmark experiments, and directions for future research. |
| Titolo autorizzato: | Semi-supervised learning ![]() |
| ISBN: | 1-282-09618-4 |
| 0-262-25589-8 | |
| 1-4294-1408-1 | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910963198603321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |