Vai al contenuto principale della pagina

Roots, Tubers, and Bulb Crop Wastes



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Ray Ramesh C Visualizza persona
Titolo: Roots, Tubers, and Bulb Crop Wastes Visualizza cluster
Pubblicazione: Singapore : , : Springer, , 2024
©2024
Edizione: 1st ed.
Descrizione fisica: 1 online resource (376 pages)
Altri autori: Ray  
Nota di contenuto: Intro -- Preface -- Contents -- About the Editor -- 1: Roots, Tubers, and Bulb Crops Wastes: Residue Utilization for Industrial Biotechnology -- 1.1 Introduction -- 1.2 Residue Composition -- 1.2.1 Root Crops -- 1.2.2 Tuber Crops -- 1.2.3 Bulb Crops -- 1.2.4 Residue Disposal -- 1.3 Biological Conversion of Crop Residue -- 1.3.1 Pretreatment Processes -- 1.4 Application of Roots, Tubers, and Bulb Crops Waste for Industrial Biotechnology -- 1.4.1 Biofuels -- 1.4.1.1 Potato Waste -- 1.4.1.2 Cassava Waste -- 1.4.1.3 Sugar Beet Waste -- 1.4.1.4 Carrot Waste -- 1.4.2 Bioproducts and Biomaterials -- 1.4.2.1 Bioplastic -- 1.4.2.2 Organic Acids -- 1.4.2.3 Other Compounds -- 1.5 Future Prospects -- References -- 2: Biovalorization of Potato Peel Waste: An Overview -- 2.1 Introduction -- 2.2 Composition of Potato Peel (PP) -- 2.3 Utilisation of Potato Peel in Different Areas/Valorization -- 2.3.1 Pharmaceutical Application -- 2.3.2 Application in the Baking Industry -- 2.3.3 Biotechnological Applications -- 2.3.3.1 Organic Acid Production -- 2.3.3.2 Glucose Production -- 2.3.3.3 Dietary Fibers and Nutrition -- 2.3.3.4 Application of Potato Peel Waste for Energy Production -- Biogas Production -- Bioethanol Production -- Biohydrogen Production -- 2.3.3.5 Animal Feed -- 2.3.3.6 Production of Enzymes -- 2.3.3.7 Production of Biofertilizer -- 2.3.3.8 Applications in Biofilms/Biocomposites -- 2.3.3.9 Antioxidants from PP -- 2.4 Conclusion and Future Perspective -- References -- 3: Potato Peel Enrichment in Functional Food and Feed -- 3.1 Introduction -- 3.2 Global Production of Potato -- 3.3 Agronomic Features of Potato Peel: Taxonomy, Morphology, and Biodiversity -- 3.4 Nutritional Composition of Potato Peel -- 3.5 Health-Promoting Activities of Potato Peel -- 3.6 Concept of Food Enrichment -- 3.6.1 Enrichment Applications in Cereal-Based Foods.
3.6.2 Meat-Based Foods -- 3.6.3 Enrichment in Edible Oils -- 3.6.4 Films and Coatings -- 3.7 Enrichment of Potato Peel in Animal Feeds -- 3.7.1 Pig Feed -- 3.7.2 Chicken Feed -- 3.7.3 Fish Feed -- 3.8 Conclusion -- References -- 4: Management of Potato Peel Waste Through Biorefinery Approaches -- 4.1 Introduction -- 4.2 Generation, Composition, and Pretreatment of Potato Peel Wastes -- 4.3 Biorefinery Approaches for PPWs Utilization -- 4.3.1 Biofuel Production -- 4.3.2 Production of Bioadsorbents -- 4.3.3 Production of Biopolymer -- 4.3.4 Energy Storage Applications -- 4.3.5 Other Biorefinery Approaches to PPWs Utilization -- 4.3.5.1 Animal Feed -- 4.3.5.2 Biofertilizer Production -- 4.3.5.3 Organic Acids Production -- 4.3.5.4 Medical and Pharmaceutical Applications -- 4.4 Challenges, Prospects, and Future Research -- 4.5 Conclusion -- References -- 5: Bioprocessing Cassava Bagasse: Part I-Bioproducts and Biochemicals -- 5.1 Introduction -- 5.2 World Production of Cassava -- 5.3 Types of Waste Generated -- 5.3.1 Solid Waste -- 5.3.2 Liquid Waste -- 5.4 Bioproducts and Biochemicals -- 5.4.1 Bioproducts -- 5.4.1.1 Biocomposites -- 5.4.1.2 Biopolymers -- 5.4.1.3 Bioplastics -- 5.4.1.4 Carbon Dots -- 5.4.1.5 Bioadsorbents -- 5.4.1.6 Biochar -- 5.4.1.7 Compost -- 5.4.1.8 Mushrooms -- 5.4.2 Platform Chemicals -- 5.4.2.1 Organic Acids -- 5.4.2.2 Nanomaterials -- 5.4.2.3 Sorbitol and Polyols -- 5.4.2.4 Xanthan Gum and Other Microbial Polysaccharides -- 5.4.2.5 Bio-Oil -- 5.4.2.6 Microbial Enzymes -- 5.4.2.7 Biocolor -- 5.5 Conclusion -- References -- 6: Bioprocessing of Cassava Bagasse: Part II-Potential for Renewable Biofuels -- 6.1 Introduction -- 6.2 Status of Global Production and Waste Disposal of Cassava Waste -- 6.3 Potential of Cassava Bagasse -- 6.4 Different Stages During Lignocellulose-Starch Biomass Bioprocesses.
6.5 Application of CB for Renewable Biofuels -- 6.5.1 Bioethanol -- 6.5.2 Biohydrogen -- 6.5.3 Biogas -- 6.5.4 Biobutanol -- 6.6 Conclusion, Challenges, and Future Prospects -- References -- 7: Bio-Valorization of Sweet Potato Bagasse into Food Additives, Feeds, and Fuels -- 7.1 Introduction -- 7.2 Proximate Composition of Sweet Potato -- 7.3 Waste Generation During Harvesting and Postharvest Handling -- 7.3.1 Utilization of Leaves, Vines, and Discarded Tubers -- 7.3.2 Utilization of Peels -- 7.3.3 Utilization of Residues from Starch Production -- 7.3.4 Utilization of Waste from Alcoholic Fermentations -- 7.4 Conclusion and Future Perspectives -- References -- 8: Yams and Aroid Crop Waste: Bio Valorization into Bioproducts and Platform Chemicals -- 8.1 Introduction -- 8.2 Yams and Aroids: Taxonomy, Botany, Global Production (FAO Data), and Waste Generation -- 8.2.1 Yams: Species, Botany (Morphology), and Edible Parts -- 8.2.1.1 Taxonomy -- 8.2.1.2 Botany -- 8.2.2 Aroids: EFY-Taro, Xanthosoma, Etc.-Botany (Morphology), Edible Parts -- 8.2.2.1 Taro (Colocasia esculenta (L.) Schott) -- 8.2.2.2 Botany -- 8.2.3 Elephant Foot Yam (Amorphophallus paeoniifolius (Dennst.) Nicolson) -- 8.2.3.1 Botany -- 8.2.4 Tannia (Xanthosoma sagittifolium (L.) Schott) -- 8.2.4.1 Taxonomy -- 8.3 Waste Generation -- 8.3.1 Yams Waste into Bioproducts and Platform Chemicals -- 8.3.1.1 Bioethanol Production -- 8.3.1.2 Energy Generation -- 8.3.1.3 Bioremediation -- 8.3.1.4 Substrate for the Production of Enzymes and Organic Acids -- 8.3.1.5 Protein Enrichment as a Functional Food Additive -- 8.3.2 Aroids (Taro, Elephant Foot Yam, Tannia) Waste into Bioproducts and Platform Chemicals -- 8.3.2.1 Taro -- 8.3.2.2 Biofuels (Bioethanol and Biogas) -- 8.3.2.3 Compost and Vermicompost -- 8.3.2.4 Biopolymer -- 8.3.2.5 Animal Feed -- 8.3.2.6 Media for Beneficial Organisms.
8.3.3 Elephant Foot Yam (EFY) -- 8.3.3.1 EFY Waste Utilization as Animal Feed -- 8.3.3.2 EFY Peel Utilization to Extract Phytochemicals and Antioxidants -- 8.3.3.3 Utilization of EFY to Produce Biofuel -- 8.3.3.4 Utilization of EFY Waste in Supercapacitor -- 8.3.3.5 EFY Waste Utilization in Wastewater Treatment -- 8.3.3.6 Use of EFY in Syrup -- 8.3.3.7 EFY Waste Utilization for Enzyme Production -- 8.3.4 Tannia -- 8.3.4.1 Bioethanol Production -- 8.3.4.2 Protein Enrichment of Peel -- 8.4 Future Prospectus -- 8.5 Conclusion -- References -- 9: Valorization of Carrot and Turnip Processing Wastes and By-Products -- 9.1 Introduction -- 9.1.1 History of Carrot and Turnip -- 9.1.1.1 Carrots -- 9.1.1.2 Turnips -- 9.1.2 Nutritional Value -- 9.1.2.1 Carrots -- 9.1.2.2 Turnips -- 9.1.3 Fruit and Vegetable-Based Industries -- 9.1.4 Waste Generation -- 9.1.5 Conversion of Carrot and Turnip Wastes into Value-Added Products -- 9.1.5.1 Carrots -- 9.1.5.2 Turnips -- 9.2 Total World Production, Harvested Areas, and Yield of Carrot and Turnip (Recent FAO Data) -- 9.2.1 Geographical Distribution of Carrot and Turnip -- 9.2.1.1 Carrots -- 9.2.1.2 Turnips -- 9.2.2 Production, Processing, and Storage -- 9.2.3 Yield of Carrot and Turnip Wastes -- 9.2.3.1 Carrots -- 9.2.3.2 Turnips -- 9.3 Botany, Morphology, and Composition of the Crops -- 9.3.1 Botanical Origin -- 9.3.1.1 Carrots -- 9.3.1.2 Turnips -- 9.3.2 Morphology -- 9.3.2.1 Carrots -- 9.3.2.2 Turnips -- 9.3.3 Composition of Carrot and Turnip Crop -- 9.3.3.1 Carrots -- 9.3.3.2 Turnips -- 9.4 Harvesting and Storage of the Crops -- 9.4.1 Carrots -- 9.4.2 Turnips -- 9.5 Processing and Production of Wastes of the Crops and Waste Composition -- 9.5.1 Carrots -- 9.5.2 Turnips -- 9.6 Aspects of Waste Valorization -- 9.6.1 Nutrients and Bioactive Components -- 9.6.1.1 Carrots -- 9.6.1.2 Turnips.
9.6.2 Extraction by Using Conventional and Non-conventional Methods -- 9.6.2.1 Carrots -- 9.6.2.2 Turnips -- 9.6.3 Applications of Carrot and Turnip Wastes in the Food Industry -- 9.6.3.1 Carrots -- 9.6.3.2 Turnips -- 9.6.4 Utilization of Carrot and Turnip Waste in Pharmaceuticals/Nutraceuticals (Table 9.3) -- 9.6.4.1 Carrot -- 9.6.4.2 Turnip -- 9.6.5 Bioethanol Production -- 9.6.5.1 Carrots -- 9.6.5.2 Turnips -- 9.6.6 Technical Difficulties -- 9.6.6.1 Extraction Process -- 9.6.6.2 Microbiological Instability -- 9.7 Future Research and Conclusion -- References -- 10: Sugar Beet Waste as Substrate for Microbial Production of Food Ingredients -- 10.1 Introduction -- 10.2 World Production of Sugar Beet (FAO Data) -- 10.3 Taxonomy and Botany -- 10.4 Types of Liquid and Solid Waste (Source of Cellulose, Hemicellulose, and Pectin) -- 10.5 Fermentation as a Valorization Tool and Biorefinery Approach -- 10.5.1 Solid-State Fermentation -- 10.5.2 Submerged Fermentation -- 10.6 Pre-treatment Strategies: Acid Hydrolysis, Enzymatic Hydrolysis, Acid-Enzyme Hydrolysis, and Hydrothermal Hydrolysis -- 10.6.1 Acid Hydrolysis -- 10.6.2 Enzymatic Hydrolysis -- 10.6.3 Hydrothermal Hydrolysis -- 10.7 Sugar Beet Bagasse as Substrate -- 10.7.1 Cattle Feed -- 10.7.2 Single-Cell Protein -- 10.7.3 Foods with Improved Aroma -- 10.7.4 Microbial Growth Enhancer -- 10.7.5 Agro-industrial Waste like Beet Pulp as a Potential Source of Polyhydroxyalkanoates (PHA) Production -- 10.7.6 Bioethanol Production Using Sugar Beet -- 10.8 Future Perspectives and Conclusion -- References -- 11: Valorization of Beetroot Waste for Extraction of Natural Dye for Textile and Food Applications -- 11.1 Introduction -- 11.2 Taxonomy and Morphology of Beetroot Plant -- 11.3 Chemical Composition of Beetroot -- 11.4 Waste Generation from Beetroot Processing and Its Use for Extraction of Natural Dyes.
11.5 Methods of Extraction of Natural Dyes from Beetroot Waste.
Titolo autorizzato: Roots, Tubers, and Bulb Crop Wastes  Visualizza cluster
ISBN: 981-9982-66-9
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910841855603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui