Vai al contenuto principale della pagina

Robust emotion recognition using spectral and prosodic features / / K. Sreenivasa Rao, Shashidhar G. Koolagudi



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Sreenivasa Rao K Visualizza persona
Titolo: Robust emotion recognition using spectral and prosodic features / / K. Sreenivasa Rao, Shashidhar G. Koolagudi Visualizza cluster
Pubblicazione: New York, : Springer, 2013
Edizione: 1st ed. 2013.
Descrizione fisica: 1 online resource (126 p.)
Disciplina: 414.6
Soggetto topico: Language and emotions
Prosodic analysis (Linguistics)
Altri autori: KoolagudiShashidhar G  
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references.
Nota di contenuto: Introduction -- Robust Emotion Recognition using Pitch Synchronous and Sub-syllabic Spectral Features -- Robust Emotion Recognition using Word and Syllable Level Prosodic Features -- Robust Emotion Recognition using Combination of Excitation Source, Spectral and Prosodic Features -- Robust Emotion Recognition using Speaking Rate Features -- Emotion Recognition on Real Life Emotions -- Summary and Conclusions -- MFCC Features -- Gaussian Mixture Model (GMM).
Sommario/riassunto: In this brief, the authors discuss recently explored spectral (sub-segmental and pitch synchronous) and prosodic (global and local features at word and syllable levels in different parts of the utterance) features for discerning emotions in a robust manner. The authors also delve into the complementary evidences obtained from excitation source, vocal tract system and prosodic features for the purpose of enhancing emotion recognition performance. Features based on speaking rate characteristics are explored with the help of multi-stage and hybrid models for further improving emotion recognition performance. Proposed spectral and prosodic features are evaluated on real life emotional speech corpus.
Titolo autorizzato: Robust emotion recognition using spectral and prosodic features  Visualizza cluster
ISBN: 9781299197435
1299197434
9781461463603
1461463602
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910437905703321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilitĂ  qui
Serie: SpringerBriefs in Speech Technology, Studies in Speech Signal Processing, Natural Language Understanding, and Machine Learning, . 2191-737X