Vai al contenuto principale della pagina

Representation Learning : Propositionalization and Embeddings / / by Nada Lavrač, Vid Podpečan, Marko Robnik-Šikonja



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Lavrač Nada Visualizza persona
Titolo: Representation Learning : Propositionalization and Embeddings / / by Nada Lavrač, Vid Podpečan, Marko Robnik-Šikonja Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Edizione: 1st ed. 2021.
Descrizione fisica: 1 online resource (175 pages)
Disciplina: 006.31
Soggetto topico: Data mining
Artificial intelligence - Data processing
Numerical analysis
Data Mining and Knowledge Discovery
Data Science
Numerical Analysis
Persona (resp. second.): PodpečanVid
Robnik-SikonjaMarko
Nota di contenuto: Introduction to Representation Learning -- Machine Learning Background -- Text Embeddings -- Propositionalization of Relational Data -- Graph and Heterogeneous Network Transformations -- Unified Representation Learning Approaches -- Many Faces of Representation Learning.
Sommario/riassunto: This monograph addresses advances in representation learning, a cutting-edge research area of machine learning. Representation learning refers to modern data transformation techniques that convert data of different modalities and complexity, including texts, graphs, and relations, into compact tabular representations, which effectively capture their semantic properties and relations. The monograph focuses on (i) propositionalization approaches, established in relational learning and inductive logic programming, and (ii) embedding approaches, which have gained popularity with recent advances in deep learning. The authors establish a unifying perspective on representation learning techniques developed in these various areas of modern data science, enabling the reader to understand the common underlying principles and to gain insight using selected examples and sample Python code. The monograph should be of interest to a wide audience, ranging from data scientists, machine learning researchers and students to developers, software engineers and industrial researchers interested in hands-on AI solutions.
Titolo autorizzato: Representation Learning  Visualizza cluster
ISBN: 3-030-68817-8
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910492147403321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui