Vai al contenuto principale della pagina

Reduced Basis Methods for Partial Differential Equations : An Introduction / / by Alfio Quarteroni, Andrea Manzoni, Federico Negri



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Quarteroni Alfio Visualizza persona
Titolo: Reduced Basis Methods for Partial Differential Equations : An Introduction / / by Alfio Quarteroni, Andrea Manzoni, Federico Negri Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Edizione: 1st ed. 2016.
Descrizione fisica: 1 online resource (XI, 296 p.)
Disciplina: 515.353
Soggetto topico: Differential equations, Partial
Mathematical models
Applied mathematics
Engineering mathematics
Fluid mechanics
Partial Differential Equations
Mathematical Modeling and Industrial Mathematics
Mathematical and Computational Engineering
Engineering Fluid Dynamics
Persona (resp. second.): ManzoniAndrea
NegriFederico
Note generali: Bibliographic Level Mode of Issuance: Monograph
Nota di bibliografia: Includes bibliographical references (pages 281-292) and index.
Nota di contenuto: 1 Introduction -- 2 Representative problems: analysis and (high-fidelity) approximation -- 3 Getting parameters into play -- 4 RB method: basic principle, basic properties -- 5 Construction of reduced basis spaces -- 6 Algebraic and geometrical structure -- 7 RB method in actions -- 8 Extension to nonaffine problems -- 9 Extension to nonlinear problems -- 10 Reduction and control: a natural interplay -- 11 Further extensions -- 12 Appendix A Elements of functional analysis.
Sommario/riassunto: This book provides a basic introduction to reduced basis (RB) methods for problems involving the repeated solution of partial differential equations (PDEs) arising from engineering and applied sciences, such as PDEs depending on several parameters and PDE-constrained optimization. The book presents a general mathematical formulation of RB methods, analyzes their fundamental theoretical properties, discusses the related algorithmic and implementation aspects, and highlights their built-in algebraic and geometric structures. More specifically, the authors discuss alternative strategies for constructing accurate RB spaces using greedy algorithms and proper orthogonal decomposition techniques, investigate their approximation properties and analyze offline-online decomposition strategies aimed at the reduction of computational complexity. Furthermore, they carry out both a priori and a posteriori error analysis. The whole mathematical presentation is made more stimulating by the use of representative examples of applicative interest in the context of both linear and nonlinear PDEs. Moreover, the inclusion of many pseudocodes allows the reader to easily implement the algorithms illustrated throughout the text. The book will be ideal for upper undergraduate students and, more generally, people interested in scientific computing.
Titolo autorizzato: Reduced Basis Methods for Partial Differential Equations  Visualizza cluster
ISBN: 3-319-15431-1
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910254078703321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: La Matematica per il 3+2, . 2038-5722 ; ; 92