Vai al contenuto principale della pagina

Quantification of Uncertainty: Improving Efficiency and Technology : QUIET selected contributions / / edited by Marta D'Elia, Max Gunzburger, Gianluigi Rozza



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Quantification of Uncertainty: Improving Efficiency and Technology : QUIET selected contributions / / edited by Marta D'Elia, Max Gunzburger, Gianluigi Rozza Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Edizione: 1st ed. 2020.
Descrizione fisica: 1 online resource (XI, 282 p. 113 illus., 90 illus. in color.)
Disciplina: 519.54
Soggetto topico: Computer science - Mathematics
Applied mathematics
Engineering mathematics
Computer simulation
Computational Mathematics and Numerical Analysis
Mathematical and Computational Engineering
Simulation and Modeling
Persona (resp. second.): D'EliaMarta
GunzburgerMax
RozzaGianluigi
Nota di contenuto: 1. Adeli, E. et al., Effect of Load Path on Parameter Identification for Plasticity Models using Bayesian Methods -- 2. Brugiapaglia S., A compressive spectral collocation method for the diffusion equation under the restricted isometry property -- 3. D’Elia, M. et al., Surrogate-based Ensemble Grouping Strategies for Embedded Sampling-based Uncertainty Quantification -- 4. Afkham, B.M. et al., Conservative Model Order Reduction for Fluid Flow -- 5. Clark C.L. and Winter C.L., A Semi-Markov Model of Mass Transport through Highly Heterogeneous Conductivity Fields -- 6. Matthies, H.G., Analysis of Probabilistic and Parametric Reduced Order Models -- 7. Carraturo, M. et al., Reduced Order Isogeometric Analysis Approach for PDEs in Parametrized Domains -- 8. Boccadifuoco, A. et al., Uncertainty quantification applied to hemodynamic simulations of thoracic aorta aneurysms: sensitivity to inlet conditions -- 9. Anderlini, A.et al., Cavitation model parameter calibration for simulations of three-phase injector flows -- 10. Hijazi, S. et al., Non-Intrusive Polynomial Chaos Method Applied to Full-Order and Reduced Problems in Computational Fluid Dynamics: a Comparison and Perspectives -- 11. Bulté, M. et al., A practical example for the non-linear Bayesian filtering of model parameters.
Sommario/riassunto: This book explores four guiding themes – reduced order modelling, high dimensional problems, efficient algorithms, and applications – by reviewing recent algorithmic and mathematical advances and the development of new research directions for uncertainty quantification in the context of partial differential equations with random inputs. Highlighting the most promising approaches for (near-) future improvements in the way uncertainty quantification problems in the partial differential equation setting are solved, and gathering contributions by leading international experts, the book’s content will impact the scientific, engineering, financial, economic, environmental, social, and commercial sectors.
Titolo autorizzato: Quantification of Uncertainty: Improving Efficiency and Technology  Visualizza cluster
ISBN: 3-030-48721-0
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910483609303321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Lecture Notes in Computational Science and Engineering, . 1439-7358 ; ; 137