Vai al contenuto principale della pagina

Quadratic Residues and Non-Residues : Selected Topics / / by Steve Wright



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Wright Steve Visualizza persona
Titolo: Quadratic Residues and Non-Residues : Selected Topics / / by Steve Wright Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Edizione: 1st ed. 2016.
Descrizione fisica: 1 online resource (XIII, 292 p. 20 illus.)
Disciplina: 510
Soggetto topico: Number theory
Commutative algebra
Commutative rings
Algebra
Field theory (Physics)
Convex geometry 
Discrete geometry
Fourier analysis
Number Theory
Commutative Rings and Algebras
Field Theory and Polynomials
Convex and Discrete Geometry
Fourier Analysis
Nota di contenuto: Chapter 1. Introduction: Solving the General Quadratic Congruence Modulo a Prime -- Chapter 2. Basic Facts -- Chapter 3. Gauss' Theorema Aureum: the Law of Quadratic Reciprocity -- Chapter 4. Four Interesting Applications of Quadratic Reciprocity -- Chapter 5. The Zeta Function of an Algebraic Number Field and Some Applications -- Chapter 6. Elementary Proofs -- Chapter 7. Dirichlet L-functions and the Distribution of Quadratic Residues -- Chapter 8. Dirichlet's Class-Number Formula -- Chapter 9. Quadratic Residues and Non-residues in Arithmetic Progression -- Chapter 10. Are quadratic residues randomly distributed? -- Bibliography.
Sommario/riassunto: This book offers an account of the classical theory of quadratic residues and non-residues with the goal of using that theory as a lens through which to view the development of some of the fundamental methods employed in modern elementary, algebraic, and analytic number theory. The first three chapters present some basic facts and the history of quadratic residues and non-residues and discuss various proofs of the Law of Quadratic Reciprosity in depth, with an emphasis on the six proofs that Gauss published. The remaining seven chapters explore some interesting applications of the Law of Quadratic Reciprocity, prove some results concerning the distribution and arithmetic structure of quadratic residues and non-residues, provide a detailed proof of Dirichlet’s Class-Number Formula, and discuss the question of whether quadratic residues are randomly distributed. The text is a valuable resource for graduate and advanced undergraduate students as well as for mathematicians interested in number theory.
Titolo autorizzato: Quadratic residues and non-residues  Visualizza cluster
ISBN: 3-319-45955-4
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910156257703321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Lecture Notes in Mathematics, . 0075-8434 ; ; 2171