Vai al contenuto principale della pagina

Privacy-Preserving Machine Learning / / by Jin Li, Ping Li, Zheli Liu, Xiaofeng Chen, Tong Li



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Li Jin Visualizza persona
Titolo: Privacy-Preserving Machine Learning / / by Jin Li, Ping Li, Zheli Liu, Xiaofeng Chen, Tong Li Visualizza cluster
Pubblicazione: Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2022
Edizione: 1st ed. 2022.
Descrizione fisica: 1 online resource (VIII, 88 p. 21 illus., 18 illus. in color.)
Disciplina: 005.8
323.448
Soggetto topico: Data protection - Law and legislation
Machine learning
Privacy
Machine Learning
Aprenentatge automàtic
Seguretat informàtica
Protecció de dades
Soggetto genere / forma: Llibres electrònics
Persona (resp. second.): LiPing
LiuZheli
ChenXiaofeng
LiTong
Nota di contenuto: Introduction -- Secure Cooperative Learning in Early Years -- Outsourced Computation for Learning -- Secure Distributed Learning -- Learning with Differential Privacy -- Applications - Privacy-Preserving Image Processing -- Threats in Open Environment -- Conclusion.
Sommario/riassunto: This book provides a thorough overview of the evolution of privacy-preserving machine learning schemes over the last ten years, after discussing the importance of privacy-preserving techniques. In response to the diversity of Internet services, data services based on machine learning are now available for various applications, including risk assessment and image recognition. In light of open access to datasets and not fully trusted environments, machine learning-based applications face enormous security and privacy risks. In turn, it presents studies conducted to address privacy issues and a series of proposed solutions for ensuring privacy protection in machine learning tasks involving multiple parties. In closing, the book reviews state-of-the-art privacy-preserving techniques and examines the security threats they face.
Titolo autorizzato: Privacy-preserving machine learning  Visualizza cluster
ISBN: 9789811691393
9811691398
9789811691386
981169138X
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910993945703321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: SpringerBriefs on Cyber Security Systems and Networks, . 2522-557X