Vai al contenuto principale della pagina
| Autore: |
Mukhopadhyay Subhas
|
| Titolo: |
Printed and Flexible Sensor Technology : Fabrication and Applications
|
| Pubblicazione: | Bristol : , : Institute of Physics Publishing, , 2022 |
| ©2021 | |
| Edizione: | 1st ed. |
| Descrizione fisica: | 1 online resource (463 pages) |
| Soggetto topico: | Flexible electronics |
| Printed electronics | |
| Altri autori: |
NagAnindya
|
| Nota di contenuto: | Intro -- Preface -- Editor biographies -- Subhas Chandra Mukhopadhyay -- Anindya Nag -- List of contributors -- Chapter 1 Printed and flexible sensors: a review of products and techniques -- 1.1 Introduction -- 1.2 Major manufacturers -- 1.2.1 Interlink Electronics -- 1.2.2 Tekscan -- 1.2.3 PST Sensors -- 1.2.4 GSI Technologies -- 1.2.5 KWJ Engineering -- 1.2.6 Peratech Holdco -- 1.2.7 ISORG -- 1.2.8 Fujifilm -- 1.2.9 Canatu -- 1.2.10 PolyIC -- 1.2.11 MC10 -- 1.2.12 QUAD Industries -- 1.2.13 Terabee -- 1.3 Materials for printed and flexible sensors -- 1.4 Printing technologies -- 1.4.1 Thick-film technology -- 1.4.2 Thin film technology -- 1.4.3 Inkjet printing -- 1.4.4 Photolithography -- 1.4.5 Masked photolithography -- 1.4.6 Maskless photolithography -- 1.4.7 Screen printing -- 1.4.8 Sputtering -- 1.4.9 Direct laser writing -- 1.4.10 Direct dry printing of carbon nanotubes -- 1.4.11 Hybrid printed electronics -- 1.5 Conclusion -- Acknowledgement -- References -- Chapter 2 Printed flexible sensors for academic research -- 2.1 Introduction -- 2.2 Printed flexible sensors -- 2.2.1 Biomedical applications of printed flexible sensors -- 2.2.2 Industrial applications of printed flexible sensors -- 2.2.3 Environmental applications of printed flexible sensors -- 2.3 Conclusion and future work -- Acknowledgement -- References -- Chapter 3 The fabrication of printed flexible sensors: challenges and possible outcomes -- 3.1 Introduction -- 3.2 The fabrication of printed flexible sensors -- 3.2.1 Screen printing -- 3.2.2 Inkjet printing -- 3.2.3 3D printing -- 3.2.4 Laser ablation -- 3.2.5 Gravure printing -- 3.3 Challenges of current sensors -- 3.4 Conclusion -- Acknowledgement -- References -- Chapter 4 Advances in printable devices for biomedical applications -- 4.1 Introduction -- 4.2 Printable biosensors. |
| 4.3 The fabrication process of printable sensors -- 4.3.1 Screen printing -- 4.3.2 3D printing -- 4.3.3 Inkjet printing -- 4.4 The application of printable biosensors in biomedicine -- 4.4.1 Application as disposable biosensors for point-of-care testing -- 4.4.2 Application as wearable and implantable sensing devices -- 4.5 Parameters of printable biosensing devices -- 4.5.1 Analytical characteristics of printable biosensors -- 4.5.2 Other parameters of printable biosensors -- 4.6 Summary and future outlook -- References -- Chapter 5 Laser induced graphene: advances in electro-biochemical sensing and energy applications -- 5.1 Introduction -- 5.2 Properties of graphene -- 5.3 The commercial synthesis of graphene -- 5.3.1 Bottom up approach -- 5.3.2 Chemical vapor deposition -- 5.3.3 Mechanical exfoliation -- 5.3.4 Liquid-phase exfoliation -- 5.3.5 Electrochemical exfoliation -- 5.4 Laser induced graphene (LIG) fabrication -- 5.4.1 Procedure -- 5.4.2 An LIG based microfluidic device -- 5.4.3 Chemical modification of LIG (composites) -- 5.4.4 Different carbon sources for LIG -- 5.5 Electrochemical and biosensing applications of LIG -- 5.5.1 LIG in electrochemical, biosensor, and immunosensor applications -- 5.5.2 Application of LIG as a liquid, gas, and pressure sensor -- 5.6 LIG in energy applications -- 5.6.1 Application of LIG as a supercapacitor and microsupercapacitor -- 5.6.2 Application of LIG in fuel cells and nanogenerators (energy harvesting) -- 5.6.3 Future outlook and conclusion -- References -- Chapter 6 Fabrication and applications of wearable microfluidic devices for point-of-care sampling, manipulation, and testing -- 6.1 Introduction -- 6.1.1 Point-of-care testing (POCT) -- 6.1.2 Wearable devices -- 6.1.3 The microfluidic lab-on-a-chip technique -- 6.1.4 The significance of wearable microfluidics for biomedical applications. | |
| 6.2 Materials and fabrication of wearable microfluidic devices -- 6.2.1 Substrate materials and sensing materials -- 6.2.2 Fabrication techniques -- 6.2.3 Characteristics of the sensor -- 6.3 Theories and designs -- 6.3.1 Wearable microfluidic devices for physical properties -- 6.3.2 Wearable microfluidic devices for body fluids -- 6.4 Applications -- 6.4.1 Wearable microfluidic devices for sweat -- 6.4.2 Wearable microfluidic devices for urine -- 6.4.3 Wearable microfluidic devices for saliva -- 6.4.4 Wearable microfluidic devices for drug delivery -- 6.5 Conclusions and outlook -- Acknowledgments -- References -- Chapter 7 Single-walled carbon nanotubes for flexible and printed electronics -- 7.1 Introduction -- 7.2 The preparation of SWNT networks and thin films -- 7.2.1 Growth, alignment, and purification of CVD-grown SWNTs -- 7.2.2 Deposition, alignment, and purification of solution-processed SWNTs -- 7.3 Applications of sc-SWNTs -- 7.4 Applications of m-SWNTs -- 7.4.1 Pressure and strain sensors -- 7.4.2 Biological and chemical sensors -- 7.4.3 Supercapacitors and solar cells -- 7.5 Conclusion and future prospects -- References -- Chapter 8 Flexible strain sensors using graphene and its composites -- 8.1 Introduction -- 8.2 Graphene-metal nanocomposites for flexible sensor applications -- 8.3 Pulse measurement using PDMS encapsulated rGO-Pd sensors -- 8.4 Graphene capacitive strain sensor -- 8.5 Graphene based flex sensor on textile -- 8.6 Summary and conclusions -- References -- Chapter 9 Screen printed electrochemical and impedance biosensors -- 9.1 Introduction -- 9.2 A fundamental understanding of screen printing technology -- 9.2.1 Electrochemical biosensors based on screen printed electrodes -- 9.2.2 Advantages of electrochemical biosensors based on screen printed electrodes -- 9.2.3 Impedance biosensors based on screen printed electrodes. | |
| 9.2.4 The advantages of impedance biosensors based on screen printed electrodes -- 9.2.5 Challenges associated with real sample analysis using screen printed electrode based biosensors -- 9.2.6 Future outlook and concluding remarks -- References -- Chapter 10 Cellulose paper for flexible electronics: design and technology -- 10.1 Introduction -- 10.2 Cellulose paper structure and fabrication -- 10.3 A basic capillary structure design on cellulose paper -- 10.4 The application of designs and processing technologies on cellulose paper for flexible electronics -- 10.5 Conclusion -- References -- Chapter 11 Graphene-based implantable electrodes for neural recording/stimulation -- 11.1 Introduction -- 11.2 Synthesis of the graphene sheet -- 11.2.1 Mechanical exfoliation of graphite -- 11.2.2 Chemical vapor deposition (CVD) -- 11.2.3 Transfer methods of graphene onto the target surface -- 11.3 Graphene characterization methods -- 11.3.1 Raman spectroscopy -- 11.3.2 FESEM and SEM -- 11.3.3 TEM and HRTEM -- 11.3.4 UV-vis spectroscopy -- 11.3.5 AFM -- 11.4 The chemically modified graphene electrode -- 11.5 Graphene-based microelectrode arrays -- 11.5.1 Material requirements for neural implants -- 11.5.2 Graphene-based microelectrodes for stimulation -- 11.5.3 Graphene-based microelectrodes for neural recording -- 11.6 Conclusion -- Funding information -- References -- Chapter 12 Screen printed electrode based sensor for biological and chemical species detection -- 12.1 Introduction -- 12.2 Screen printed electrode (SPE) fabrication -- 12.3 Theory and operation of an electrochemical sensor -- 12.4 The SPE based biosensor -- 12.4.1 Immunosensor -- 12.4.2 Immunoassay -- 12.4.3 The construction of an amperometric type immunosensor -- 12.4.4 Chemosensor -- 12.4.5 Substrate and electrode materials -- 12.4.6 Electrode surface modification. | |
| 12.5 Screen printed electrode fabrication -- 12.6 Electrochemical signal measurement -- 12.6.1 A basic potentiostat circuit of electrochemical signal transduction -- 12.6.2 Cyclic voltammetry -- 12.6.3 Linear sweep voltammetry -- 12.6.4 Pulse voltammetry -- 12.6.5 Stripping voltammetry -- 12.7 Basic characteristics of some electrochemical signals -- 12.7.1 Electrochemical cell and signal -- 12.7.2 The electrochemical response of different SPEs -- 12.8 Conclusion -- Acknowledgement -- References -- Chapter 13 3D printed enzymatic biofuel cells incorporated with graphene and modified graphite bioelectrodes: a comparative study -- 13.1 Introduction -- 13.2 Experimental details -- 13.2.1 Materials, reagents, and supplies -- 13.2.2 Preparation of chemicals -- 13.2.3 Characterization and fabrication equipment -- 13.2.4 3D printed bioelectrode fabrication and preparation -- 13.2.5 Preparation of pencil graphite bioelectrodes -- 13.2.6 Design and fabrication of a 3D printed microchannel -- 13.2.7 Integration of 3DPG and PGE based 3D printed EBFCs -- 13.2.8 Electrochemical analysis -- 13.3 Results and discussion -- 13.3.1 Morphological analysis -- 13.3.2 Optimization of fuel concentration -- 13.3.3 Bioanode characterization -- 13.3.4 Effect of the scan rate -- 13.3.5 Biocathode characterization -- 13.3.6 Electrochemical impedance measurements -- 13.3.7 The effect of flow rate -- 13.3.8 Power performance of the biofuel cell -- 13.3.9 Stability study -- 13.4 Conclusions -- Acknowledgement -- References -- Chapter 14 Development, simulation and characterization of a novel incontinence sensor system using 2D-printing technology with conductive polymer PEDOT:PSS -- 14.1 Introduction -- 14.2 Material characterization for the FEM calculation -- 14.2.1 Relative permittivity -- 14.2.2 Electrical conductivity -- 14.3 Experimental models -- 14.3.1 Analytic model. | |
| 14.3.2 Simulation model. | |
| Sommario/riassunto: | This book reviews and showcases the design, fabrication and implementation of printed and flexible sensors and their range of applications in biomedical, industrial, and environmental settings. |
| Titolo autorizzato: | Printed and Flexible Sensor Technology ![]() |
| ISBN: | 9780750343107 |
| 0750343109 | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9911009380503321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |