Vai al contenuto principale della pagina
| Autore: |
Alhelou Hassan Haes
|
| Titolo: |
Power System Strength : Evaluation Methods, Best Practice, Case Studies, and Applications
|
| Pubblicazione: | Stevenage : , : Institution of Engineering & Technology, , 2023 |
| ©2024 | |
| Edizione: | 1st ed. |
| Descrizione fisica: | 1 online resource (225 pages) |
| Disciplina: | 621.31 |
| Soggetto topico: | Smart power grids - Technological innovations |
| Electric power systems | |
| Réseaux électriques (Énergie) | |
| Altri autori: |
HosseinzadehNasser
BahraniBehrooz
|
| Nota di contenuto: | Intro -- Title -- Copyright -- Contents -- About the editors -- Foreword -- Introduction -- 1 Power system strength assessment with high penetration of inverter-based resources - a conceptual approach -- 1.1 Introduction -- 1.2 Work in progress for determination of power system strength in a large grid -- 1.2.1 Method of assessing power system strength -- 1.2.2 Relationship between SCR and power system voltage stability -- 1.2.3 Effect of IBR dynamics on power system strength assessment -- 1.2.4 Outline of a new method for assessing power system strength -- 1.2.5 Summary and future directions -- References -- 2 Power system strength assessment with inverter-based resources: challenges and solutions -- 2.1 Introduction -- 2.2 Power system strength with grid-following inverter and grid-forming inverter and its relation to weak grids -- 2.3 Power system strength definitions -- 2.4 System strength metrics -- 2.4.1 SCR index -- 2.4.2 Weighted short circuit ratio -- 2.4.3 Composite SCR -- 2.4.4 Effective SCR -- 2.4.5 SCR with interaction factors -- 2.4.6 Site-dependent SCR (SDSCR) index -- 2.4.7 Inverter interaction level SCR (IILSCR) -- 2.4.8 Attributes of power system strength assessment methodologies -- 2.5 Impact of power system components on power system strength -- 2.5.1 Impact of phase-locked loops on the system strength -- 2.5.2 Impact of flexible alternating current transmission system devices on the power system strength -- 2.5.3 Impact of synchronous condensers on the system strength -- 2.6 Applicability of SCR index: case study -- 2.6.1 EMT simulations on SCR index -- 2.6.2 Discussion of simulation results -- 2.7 Research gaps and new research directions -- References -- 3 Voltage sensitivity-based system strength metric -- 3.1 Introduction -- 3.2 System description -- 3.3 Power transfer limit of IBR -- 3.3.1 Angle stability limit. |
| 3.3.2 Voltage stability limit -- 3.3.3 Impact of the local load -- 3.3.4 Impact of synchronous condenser -- 3.3.5 Discussion -- 3.4 Simulation results -- 3.5 Discussion -- 3.6 Conclusion -- References -- 4 Dynamic model reduction of power networks for fast assessment of power system strength - part 1: classical techniques -- 4.1 Introduction to system strength -- 4.2 Model reduction strategies -- 4.2.1 Background -- 4.2.2 Overview -- 4.2.3 Classical reduction techniques -- 4.2.4 Classical dynamic equivalent techniques -- 4.2.5 Limitations of classical reduction techniques -- 4.2.6 Research gaps and conclusions -- References -- 5 Dynamic model reduction of IBRs-rich power networks for fast assessment of power system strength - part 2: data-driven techniques -- 5.1 Data-driven techniques -- 5.2 Black-box identification of the ES -- 5.2.1 Non-parametric techniques -- 5.2.2 Parameter estimation techniques -- 5.3 Application of measurement-based techniques to IBR-integrated networks -- 5.3.1 Measurement-based coherency identification -- 5.4 Case study - identification of the ES coherent generators in the AU14G system using the dynamic time warping technique -- 5.5 Measurement-based reduction of wind power plants, solar power plants, microgrids, and ADNs -- 5.5.1 Wind farms -- 5.5.2 Solar farms -- 5.5.3 Microgrids -- 5.5.4 ADNs -- 5.6 Case study: dynamic model reduction of the ES using LSTM recurrent neural networks -- 5.7 Research gaps and conclusions -- References -- 6 Inverter-based resources and their impact on power system inertia and system strength -- 6.1 Introduction -- 6.1.1 What is inertia, and why is it important in the power system? -- 6.1.2 Historical perspectives -- 6.1.3 How IBRs impact power system inertia? -- 6.1.4 How IBRs impact power system strength? -- 6.2 Frequency response and inertia -- 6.3 Inertia requirement. | |
| 6.4 Estimation methods of power system inertia -- 6.5 Power system inertia estimation -- 6.6 Case study of a power system with integrated wind energy plant -- 6.6.1 Frequency response to different IBR integration levels -- 6.6.2 System inertia estimation at different IBR integration levels -- 6.7 Research gaps, industry challenges, and future research directions -- 6.7.1 Research gaps -- 6.7.2 Industry challenges -- 6.7.3 Future research directions -- 6.8 Conclusions -- References -- 7 The effect of power system strength on the calculation of available transmission capacity -- 7.1 Introduction -- 7.1.1 The basics of power systems strength -- 7.1.2 Concepts and definitions of ATC -- 7.1.3 Static ATC -- 7.1.4 Dynamic ATC -- 7.2 DATC and holomorphic approach -- 7.2.1 DATC and holomorphic hybrid method -- 7.2.2 Example network -- 7.2.3 Simulation and comparison -- 7.2.4 Wind farms In Iran -- 7.2.5 Approximate NRS algorithm -- 7.2.6 Developed DH algorithm -- 7.2.7 Revised method of holomorphic embedded load flow -- 7.2.8 APEBS method -- 7.2.9 Conclusion -- 7.3 DATC and DELF -- 7.3.1 SATC and DELF -- 7.3.2 DELF -- 7.3.3 AMD method -- 7.4 DATC and HVDC and wind -- 7.4.1 Importance of HVDC network -- 7.4.2 Mathematical model of AC/DC network -- 7.4.3 Solving the AC/DC load flow equation -- 7.4.4 SATC and holomorphic method -- 7.4.5 Conclusion -- 7.5 ATC and state estimation -- 7.6 ATC and cyber security -- 7.6.1 Power system cybersecurity -- 7.6.2 WLS method -- 7.6.3 The suggested algorithm -- 7.6.4 With/without cyberattacks in ATC -- 7.7 Conclusion -- References -- 8 Advanced control approach for providing system strength -- 8.1 Introduction -- 8.2 Fuzzy approximation controller for MIMO system -- 8.2.1 Input-output feedback linearization -- 8.2.2 General MIMO system fuzzy approximation controller -- 8.2.3 Stability of the closed-loop. | |
| 8.3 PV grid-connected inverter adaptive fuzzy controller -- 8.3.1 PV grid-connected inverter system model -- 8.3.2 Input-output feedback linearization for PV grid-connected inverter system -- 8.3.3 PV grid-connected inverter adaptive fuzzy controller -- 8.4 Simulation situations and results -- 8.4.1 Situation I: unity power factor -- 8.4.2 Situation II: tracking of reactive current changes -- 8.4.3 Situation III: tracking of active current changes -- 8.4.4 Situation IV: robust tracking -- 8.5 Research gaps and future work -- 8.6 Conclusions -- References -- 9 The impact of renewable energy on voltage stability and fault level -- 9.1 Introduction -- 9.2 Highlights -- 9.3 Power system strength -- 9.4 Short-circuit analysis and converters -- 9.5 Reference grid codes -- 9.6 Iterative short-circuit analysis -- 9.7 The Sicilian grid: a real case study -- 9.8 Procedure testing and dynamic simulations -- 9.9 Fault level of Sicilian power system -- 9.10 Fault level of 100% RES power system -- 9.11 Comparison of grid forming and grid following operation -- 9.12 Future research -- 9.13 Conclusions -- Bibliography -- 10 New smart devices-based strategies for optimal planning and operation of active electric distribution networks -- 10.1 Introduction -- 10.1.1 The AEDN concept -- 10.1.2 The basics of power systems strength -- 10.1.3 Original contributions -- 10.2 Technologies integrated into the AEDNs -- 10.2.1 Advanced meter infrastructure -- 10.2.2 Distributed energy resources -- 10.2.3 Demand response -- 10.2.4 Electric mobility -- 10.3 Smart devices-based strategy in the optimal planning and operation of the AEDNs -- 10.3.1 Database module -- 10.3.2 Decision-making module -- 10.4 Testing the strategy -- 10.5 Research gaps, challenges, and future research directions -- 10.6 Conclusions -- References -- Index. | |
| Sommario/riassunto: | The comprehensive resource on measuring and improving the strength of power systems with distributed generation and loads. Covering the latest evaluation methods, best practice, case studies, and applications, the book enables researchers to advance the movement towards stable clean power systems. |
| Titolo autorizzato: | Power System Strength ![]() |
| ISBN: | 1-83724-439-1 |
| 1-5231-6318-6 | |
| 1-83953-808-2 | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9911007178703321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |