Vai al contenuto principale della pagina
| Autore: |
Vasilevski Nikolai
|
| Titolo: |
Polyanalytic Type Function Spaces / / by Nikolai Vasilevski
|
| Pubblicazione: | Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2024 |
| Edizione: | 1st ed. 2024. |
| Descrizione fisica: | 1 online resource (199 pages) |
| Disciplina: | 516.3 |
| Soggetto topico: | Functions of complex variables |
| Operator theory | |
| Several Complex Variables and Analytic Spaces | |
| Operator Theory | |
| Functions of a Complex Variable | |
| Nota di bibliografia: | Includes bibliographical references and index. |
| Nota di contenuto: | Foreword -- Preface -- Introduction -- I Spaces of polyanalytic type in one complex variable -- 1 Extended Fock-space construction approach -- 2 Complex plane C case -- 3 Unit disk D case -- 4 Upper half-plane Î case -- 5 Basis oriented approach -- 6 Approach based on pure isometries -- II Spaces of polyanalytic type in several complex variables -- 7 Multi-operator extended Fock-space construction -- 8 The Cn case -- 9 The unit ball Bn case -- 10 Hilbert spaces with generalized Gaussian measure on C2 -- 11 The Siegel domain case -- Bibliography -- Index. |
| Sommario/riassunto: | This book is about function spaces aspects of polyanalytic functions, a topic that has gained a lot of attention in the past decades. This book fills a gap in literature and is written by a leading researcher in the field. Rather than studying polyanalytic functions from a complex analysis point of view, it considers the (Lie)-algebraic part of the theory. Several generalizations are offered. The presented theory has many applications, including to quantum physics. An extensive introduction to the topic is provided, making the book accessible to specialists and newcomers alike. |
| Titolo autorizzato: | Polyanalytic Type Function Spaces ![]() |
| ISBN: | 9783031761812 |
| 3031761812 | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910919811603321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilitĂ qui |