Vai al contenuto principale della pagina

Personalized Privacy Protection in Big Data / / by Youyang Qu, Mohammad Reza Nosouhi, Lei Cui, Shui Yu



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Qu Youyang Visualizza persona
Titolo: Personalized Privacy Protection in Big Data / / by Youyang Qu, Mohammad Reza Nosouhi, Lei Cui, Shui Yu Visualizza cluster
Pubblicazione: Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2021
Edizione: 1st ed. 2021.
Descrizione fisica: 1 online resource (148 pages)
Disciplina: 005.8
Soggetto topico: Data protection—Law and legislation
Quantitative research
Data mining
Artificial intelligence—Data processing
Coding theory
Information theory
Computer security
Privacy
Data Analysis and Big Data
Data Mining and Knowledge Discovery
Data Science
Coding and Information Theory
Principles and Models of Security
Nota di contenuto: Chapter 1: Introduction -- Chapter 2: Current Methods of Privacy Protection -- Chapter 3: Privacy Attacks -- Chapter 4: Personalize Privacy Defense -- Chapter 5: Future Directions -- Chapter6: Summary and Outlook.
Sommario/riassunto: This book presents the data privacy protection which has been extensively applied in our current era of big data. However, research into big data privacy is still in its infancy. Given the fact that existing protection methods can result in low data utility and unbalanced trade-offs, personalized privacy protection has become a rapidly expanding research topic. In this book, the authors explore emerging threats and existing privacy protection methods, and discuss in detail both the advantages and disadvantages of personalized privacy protection. Traditional methods, such as differential privacy and cryptography, are discussed using a comparative and intersectional approach, and are contrasted with emerging methods like federated learning and generative adversarial nets. The advances discussed cover various applications, e.g. cyber-physical systems, social networks, and location-based services. Given its scope, the book is of interest to scientists, policy-makers, researchers, and postgraduates alike.
Titolo autorizzato: Personalized privacy protection in big data  Visualizza cluster
ISBN: 981-16-3750-4
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910495251903321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Data Analytics, . 2520-1867