Vai al contenuto principale della pagina
| Autore: |
Wu Jiang
|
| Titolo: |
Optical imaging and sensing : materials, devices, and applications
|
| Pubblicazione: | Newark : , : John Wiley & Sons, Incorporated, , 2023 |
| ©2023 | |
| Edizione: | 1st ed. |
| Descrizione fisica: | 1 online resource (289 pages) |
| Disciplina: | 621.367 |
| Soggetto topico: | Optoelectronics |
| Optical images | |
| Altri autori: |
XuHao
|
| Nota di contenuto: | Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction of Optical Imaging and Sensing: Materials, Devices, and Applications -- 1.1 Optoelectronic Material Systems -- 1.1.1 Si Platform -- 1.1.2 Two‐dimensional Materials and Their van der Waals Heterostructures -- 1.1.2.1 Graphene -- 1.1.2.2 Transition Metal Dichalcogenides -- 1.1.2.3 2D Heterostructures -- 1.2 Challenges and Prospect of Nano‐optoelectronic Devices -- 1.2.1 III-V Compounds -- 1.2.2 Perovskites -- 1.2.3 Organic Optoelectronic Materials -- References -- Chapter 2 2D Material‐Based Photodetectors for Imaging -- 2.1 Introduction -- 2.2 Visible‐Light Photodetectors -- 2.3 Infrared Photodetectors -- 2.4 Broadband Photodetectors -- 2.5 Plasmon‐Enhanced Photodetectors -- 2.6 Large‐Scale and Flexible Photodetectors -- 2.7 Summary -- References -- Chapter 3 Surface Plasmonic Resonance‐Enhanced Infrared Photodetectors -- 3.1 Introduction -- 3.2 Brief Review of Basic Concepts of SPR and SPR Structures -- 3.2.1 Plasma Oscillations in Metals -- 3.2.2 Complex Permittivity and the Drude Model -- 3.2.3 Surface Plasmonic Waves at the Semi‐infinite Dielectric and Metal Interface -- 3.2.4 Prism‐Coupled Surface Plasmonic Wave Excitation -- 3.2.5 Surface Grating‐Coupled Surface Plasmonic Wave Excitation -- 3.3 Surface Plasmonic Wave‐Enhanced QDIPs -- 3.3.1 Two‐Dimensional Metallic Hole Array (2DSHA)‐Induced Surface Plasmonic Waves -- 3.3.2 2DSHA Surface Plasmonic Structure‐Enhanced QDIP -- 3.4 Localized Surface Plasmonic Wave‐Enhanced QDIPs -- 3.4.1 Localized Surface Plasmonic Waves -- 3.4.2 Near‐Field Distributions -- 3.4.3 Nanowire Pair -- 3.4.4 Circular Disk Array for Broadband IR Photodetector Enhancement -- 3.5 Plasmonic Perfect Absorber (PPA) -- 3.5.1 Introduction to Plasmonic Perfect Absorber -- 3.5.2 Plasmonic Perfect Absorber‐Enhanced QDIP. |
| 3.5.3 Broadband Plasmonic Perfect Absorber -- 3.5.4 2DSHA Plasmonic Perfect Absorber -- 3.6 Chapter Summary -- References -- Chapter 4 Optical Resistance Switch for Optical Sensing -- 4.1 Introduction -- 4.2 Graphene Optical Switch -- 4.2.1 DC Mode of the Gate Capacitor -- 4.2.2 AC Mode of the Gate Capacitor -- 4.3 Nanomaterial Heterostructures‐Based Switch -- 4.3.1 Situation 1: n2L & -- gg -- n2H -- 4.3.2 Situation 2: n2H & -- gg -- n2L -- 4.3.3 Situation 3: n2H ≃ n2L -- 4.4 Modulation Characteristics -- 4.5 Summary -- References -- Chapter 5 Optical Interferometric Sensing -- 5.1 Introduction -- 5.2 Nonlinear Interferometer -- 5.2.1 Experimental Implementation of Phase Locking -- 5.2.2 Quantum Enhancement of Phase Sensitivity -- 5.2.3 Enhancement of Entanglement and Quantum Noise Cancellation -- 5.3 Other Types of Nonlinear Interferometers -- 5.3.1 Nonlinear Sagnac Interferometer -- 5.3.2 Hybrid Interferometer with a Nonlinear FWM Process and a Linear Beam‐splitter -- 5.3.3 Experimental Implementation of a Phase‐Sensitive Parametric Amplifier -- 5.3.4 Interference‐Induced Quantum‐Squeezing Enhancement -- 5.4 Nonlinear Interferometric SPR Sensing -- 5.5 Summary and Outlook -- References -- Chapter 6 Spatial‐frequency‐shift Super‐resolution Imaging Based on Micro/nanomaterials -- 6.1 Introduction -- 6.2 The Principle of SFS Super‐resolution Imaging Based on Micro/nanomaterials -- 6.3 Super‐resolution Imaging Based on Nanowires and Polymers -- 6.4 Super‐resolution Imaging Based on Photonic Waveguides -- 6.4.1 Label‐free Super‐resolution Imaging Based on Photonic Waveguides -- 6.4.2 Labeled Super‐resolution Imaging Based on Photonic Waveguides -- 6.5 Super‐resolution Imaging Based on Wafers -- 6.5.1 Principle of Super‐resolution Imaging Based on Wafers -- 6.5.2 Label‐free Super‐resolution Imaging Based on Wafers. | |
| 6.5.3 Labeled Super‐resolution Imaging Based on Wafers -- 6.6 Super‐resolution Imaging Based on SPPs and Metamaterials -- 6.6.1 SPP‐assisted Illumination Nanoscopy -- 6.6.1.1 Metal-Dielectric Multilayer Metasubstrate PSIM -- 6.6.1.2 Graphene‐assisted PSIM -- 6.6.2 Localized Plasmon‐assisted Illumination Nanoscopy -- 6.6.3 Metamaterial‐assisted Illumination Nanoscopy -- 6.7 Summary and Outlook -- References -- Chapter 7 Monolithically Integrated Multi‐section Semiconductor Lasers: Toward the Future of Integrated Microwave Photonics -- 7.1 Introduction -- 7.2 Monolithically Integrated Multi‐section Semiconductor Laser (MI‐MSSL) Device -- 7.2.1 Monolithically Integrated Optical Feedback Lasers (MI‐OFLs) -- 7.2.1.1 Passive Feedback Lasers (PFLs) -- 7.2.1.2 Amplified/Active Feedback Lasers (AFLs) -- 7.2.2 Monolithically Integrated Mutually Injected Semiconductor Lasers (MI‐MISLs) -- 7.3 Electro‐optic Conversion Characteristics -- 7.3.1 Modulation Response Enhancement -- 7.3.2 Nonlinearity Reduction -- 7.3.3 Chirp Suppression -- 7.4 Photonic Microwave Generation -- 7.4.1 Tunable Single‐Tone Microwave Signal Generation -- 7.4.1.1 Free‐Running State -- 7.4.1.2 Mode‐Beating Self‐Pulsations (MB‐SPs) -- 7.4.1.3 Period‐One (P1) Oscillation -- 7.4.1.4 Sideband Injection Locking -- 7.4.2 Frequency‐Modulated Microwave Signal Generation -- 7.4.3 High‐Performance Microwave Signal Generation Optimizing Technique -- 7.5 Microwave Photonic Filter (MPF) -- 7.6 Laser Arrays -- 7.7 Conclusion -- Funding Information -- Disclosures -- References -- Index -- EULA. | |
| Sommario/riassunto: | This book, edited by Jiang Wu and Hao Xu, explores the latest advancements in optical imaging and sensing technologies. It covers a range of topics, including the development and application of materials such as silicon, graphene, perovskites, and 2D materials in optoelectronic devices. The book also addresses the integration of these materials with existing technologies, challenges in device fabrication, and innovations in enhancing device performance. It discusses the role of optical sensors, lasers, and other devices in applications like healthcare and telecommunications, emphasizing the importance of high detectivity and low noise in infrared regions. The text is intended for researchers, engineers, and professionals interested in the fields of optical imaging and sensing. |
| Titolo autorizzato: | Optical imaging and sensing ![]() |
| ISBN: | 9783527835201 |
| 3527835202 | |
| 9783527835188 | |
| 3527835180 | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9911018928303321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |