Vai al contenuto principale della pagina

Optical imaging and sensing : materials, devices, and applications



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Wu Jiang Visualizza persona
Titolo: Optical imaging and sensing : materials, devices, and applications Visualizza cluster
Pubblicazione: Newark : , : John Wiley & Sons, Incorporated, , 2023
©2023
Edizione: 1st ed.
Descrizione fisica: 1 online resource (289 pages)
Disciplina: 621.367
Altri autori: XuHao  
Nota di contenuto: Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction of Optical Imaging and Sensing: Materials, Devices, and Applications -- 1.1 Optoelectronic Material Systems -- 1.1.1 Si Platform -- 1.1.2 Two‐dimensional Materials and Their van der Waals Heterostructures -- 1.1.2.1 Graphene -- 1.1.2.2 Transition Metal Dichalcogenides -- 1.1.2.3 2D Heterostructures -- 1.2 Challenges and Prospect of Nano‐optoelectronic Devices -- 1.2.1 III-V Compounds -- 1.2.2 Perovskites -- 1.2.3 Organic Optoelectronic Materials -- References -- Chapter 2 2D Material‐Based Photodetectors for Imaging -- 2.1 Introduction -- 2.2 Visible‐Light Photodetectors -- 2.3 Infrared Photodetectors -- 2.4 Broadband Photodetectors -- 2.5 Plasmon‐Enhanced Photodetectors -- 2.6 Large‐Scale and Flexible Photodetectors -- 2.7 Summary -- References -- Chapter 3 Surface Plasmonic Resonance‐Enhanced Infrared Photodetectors -- 3.1 Introduction -- 3.2 Brief Review of Basic Concepts of SPR and SPR Structures -- 3.2.1 Plasma Oscillations in Metals -- 3.2.2 Complex Permittivity and the Drude Model -- 3.2.3 Surface Plasmonic Waves at the Semi‐infinite Dielectric and Metal Interface -- 3.2.4 Prism‐Coupled Surface Plasmonic Wave Excitation -- 3.2.5 Surface Grating‐Coupled Surface Plasmonic Wave Excitation -- 3.3 Surface Plasmonic Wave‐Enhanced QDIPs -- 3.3.1 Two‐Dimensional Metallic Hole Array (2DSHA)‐Induced Surface Plasmonic Waves -- 3.3.2 2DSHA Surface Plasmonic Structure‐Enhanced QDIP -- 3.4 Localized Surface Plasmonic Wave‐Enhanced QDIPs -- 3.4.1 Localized Surface Plasmonic Waves -- 3.4.2 Near‐Field Distributions -- 3.4.3 Nanowire Pair -- 3.4.4 Circular Disk Array for Broadband IR Photodetector Enhancement -- 3.5 Plasmonic Perfect Absorber (PPA) -- 3.5.1 Introduction to Plasmonic Perfect Absorber -- 3.5.2 Plasmonic Perfect Absorber‐Enhanced QDIP.
3.5.3 Broadband Plasmonic Perfect Absorber -- 3.5.4 2DSHA Plasmonic Perfect Absorber -- 3.6 Chapter Summary -- References -- Chapter 4 Optical Resistance Switch for Optical Sensing -- 4.1 Introduction -- 4.2 Graphene Optical Switch -- 4.2.1 DC Mode of the Gate Capacitor -- 4.2.2 AC Mode of the Gate Capacitor -- 4.3 Nanomaterial Heterostructures‐Based Switch -- 4.3.1 Situation 1: n2L & -- gg -- n2H -- 4.3.2 Situation 2: n2H & -- gg -- n2L -- 4.3.3 Situation 3: n2H ≃ n2L -- 4.4 Modulation Characteristics -- 4.5 Summary -- References -- Chapter 5 Optical Interferometric Sensing -- 5.1 Introduction -- 5.2 Nonlinear Interferometer -- 5.2.1 Experimental Implementation of Phase Locking -- 5.2.2 Quantum Enhancement of Phase Sensitivity -- 5.2.3 Enhancement of Entanglement and Quantum Noise Cancellation -- 5.3 Other Types of Nonlinear Interferometers -- 5.3.1 Nonlinear Sagnac Interferometer -- 5.3.2 Hybrid Interferometer with a Nonlinear FWM Process and a Linear Beam‐splitter -- 5.3.3 Experimental Implementation of a Phase‐Sensitive Parametric Amplifier -- 5.3.4 Interference‐Induced Quantum‐Squeezing Enhancement -- 5.4 Nonlinear Interferometric SPR Sensing -- 5.5 Summary and Outlook -- References -- Chapter 6 Spatial‐frequency‐shift Super‐resolution Imaging Based on Micro/nanomaterials -- 6.1 Introduction -- 6.2 The Principle of SFS Super‐resolution Imaging Based on Micro/nanomaterials -- 6.3 Super‐resolution Imaging Based on Nanowires and Polymers -- 6.4 Super‐resolution Imaging Based on Photonic Waveguides -- 6.4.1 Label‐free Super‐resolution Imaging Based on Photonic Waveguides -- 6.4.2 Labeled Super‐resolution Imaging Based on Photonic Waveguides -- 6.5 Super‐resolution Imaging Based on Wafers -- 6.5.1 Principle of Super‐resolution Imaging Based on Wafers -- 6.5.2 Label‐free Super‐resolution Imaging Based on Wafers.
6.5.3 Labeled Super‐resolution Imaging Based on Wafers -- 6.6 Super‐resolution Imaging Based on SPPs and Metamaterials -- 6.6.1 SPP‐assisted Illumination Nanoscopy -- 6.6.1.1 Metal-Dielectric Multilayer Metasubstrate PSIM -- 6.6.1.2 Graphene‐assisted PSIM -- 6.6.2 Localized Plasmon‐assisted Illumination Nanoscopy -- 6.6.3 Metamaterial‐assisted Illumination Nanoscopy -- 6.7 Summary and Outlook -- References -- Chapter 7 Monolithically Integrated Multi‐section Semiconductor Lasers: Toward the Future of Integrated Microwave Photonics -- 7.1 Introduction -- 7.2 Monolithically Integrated Multi‐section Semiconductor Laser (MI‐MSSL) Device -- 7.2.1 Monolithically Integrated Optical Feedback Lasers (MI‐OFLs) -- 7.2.1.1 Passive Feedback Lasers (PFLs) -- 7.2.1.2 Amplified/Active Feedback Lasers (AFLs) -- 7.2.2 Monolithically Integrated Mutually Injected Semiconductor Lasers (MI‐MISLs) -- 7.3 Electro‐optic Conversion Characteristics -- 7.3.1 Modulation Response Enhancement -- 7.3.2 Nonlinearity Reduction -- 7.3.3 Chirp Suppression -- 7.4 Photonic Microwave Generation -- 7.4.1 Tunable Single‐Tone Microwave Signal Generation -- 7.4.1.1 Free‐Running State -- 7.4.1.2 Mode‐Beating Self‐Pulsations (MB‐SPs) -- 7.4.1.3 Period‐One (P1) Oscillation -- 7.4.1.4 Sideband Injection Locking -- 7.4.2 Frequency‐Modulated Microwave Signal Generation -- 7.4.3 High‐Performance Microwave Signal Generation Optimizing Technique -- 7.5 Microwave Photonic Filter (MPF) -- 7.6 Laser Arrays -- 7.7 Conclusion -- Funding Information -- Disclosures -- References -- Index -- EULA.
Titolo autorizzato: Optical imaging and sensing  Visualizza cluster
ISBN: 3-527-83520-2
3-527-83518-0
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910840674203321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui