Vai al contenuto principale della pagina
| Autore: |
Kumar Nitin
|
| Titolo: |
Nonthermal Food Engineering Operations
|
| Pubblicazione: | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| ©2024 | |
| Edizione: | 1st ed. |
| Descrizione fisica: | 1 online resource (526 pages) |
| Soggetto topico: | Food science |
| Biotechnological process control | |
| Altri autori: |
PanghalAnil
GargM. K
|
| Nota di contenuto: | Cover -- Series Page -- Title Page -- Copyright Page -- Preface -- Chapter 1 Artificial Intelligence (AI) in Food Processing -- 1.1 Introduction -- 1.2 Evolution of Artificial Intelligence -- 1.3 Artificial Intelligence in Food Processing -- 1.4 Artificial Neural Network (ANN) -- 1.4.1 Fats & -- Oils Quality Evaluation -- 1.4.2 Fruits Quality Evaluation -- 1.4.3 Dairy Products Quality Evaluation -- 1.4.4 Solvent Extraction -- 1.4.5 Microwave Assisted Extraction (MAE) -- 1.4.6 Ultrasound-Assisted Extraction (UAE) -- 1.4.7 Microwave Drying -- 1.4.8 Tray Drying -- 1.4.9 Osmotic Dehydration -- 1.4.10 Other Drying Process -- 1.4.11 Extrusion Process -- 1.4.12 Baking -- 1.4.13 Storage of Food Grains -- 1.5 Fuzzy Logic System -- 1.5.1 Fuzzy Logic Systems in Liquid Foods Processing -- 1.5.2 Fuzzy Logic Systems in Solid Foods Processing -- 1.5.3 Semisolid Products -- 1.5.4 Drying Process -- 1.5.5 Baking Process -- 1.5.6 Dairy Process -- 1.5.7 Thermal Process -- 1.5.8 Fermentation -- 1.6 Knowledge.Based Expert System (ES) -- 1.6.1 Applications of ES in the Food Processing Sector -- 1.7 Machine Learning System (ML) -- 1.7.1 Detection of Defects and Mechanical Damage in Fruits -- 1.7.2 ML in Foreign Material Detection -- 1.7.3 ML in Food Quality Evaluation -- 1.8 Conclusion -- References -- Chapter 2 Advances in Ultrasound in Food Industry -- 2.1 Introduction -- 2.2 Background of Ultrasound -- 2.3 Ultrasonic Waves -- 2.4 Applications of Ultrasonics in the Food Industry -- 2.4.1 Food Preservation -- 2.4.2 Food Processing -- 2.5 Detection of Fruit Quality -- 2.6 Ultrasound in Dairy Sector -- 2.7 Conclusion -- References -- Chapter 3 Biosensors in Food Quality and Safety -- 3.1 Introduction -- 3.2 What is a Biosensor? -- 3.2.1 Components of a Biosensor Diagnostic Technique -- 3.2.1.1 Biological Element -- 3.2.1.2 Physicochemical Transducer. |
| 3.2.1.3 Detector/Recognition of Signal -- 3.2.2 Basic Working Mechanism of Biosensors -- 3.2.3 Important Characteristics of Biosensors -- 3.3 Categorization of Biosensors -- 3.3.1 Calorimetric Biosensors -- 3.3.2 Electrochemical Biosensors -- 3.3.2.1 Amperometric Biosensors -- 3.3.2.2 Potentiometric Biosensors -- 3.3.2.3 Conductometric Biosensors -- 3.3.3 Optical Biosensors -- 3.3.4 Microbial-Based Biosensors -- 3.3.4.1 Electrochemical Microbial Biosensors -- 3.3.4.2 Optical Microbial Biosensors -- 3.3.5 Affinity Biosensors -- 3.3.6 Plant Tissue Biosensors -- 3.3.7 Surface Plasmon Resonance (SPR) Biosensors -- 3.3.8 Acoustic Sensors -- 3.3.9 Aptamers -- 3.3.10 Molecularly Imprinted Polymers -- 3.3.11 Immunosensors -- 3.4 Application of Biosensors -- 3.4.1 Scenario of Available Biosensors for the Detection of Various Compounds Present in Food Products -- 3.4.2 Electrochemical Biosensors for Food Products -- 3.4.3 Optical Biosensor -- 3.4.4 Microbial Biosensors -- 3.4.5 Plant Tissue Biosensors -- 3.5 Future Prospects -- References -- Chapter 4 Cold Plasma: Principles and Applications -- 4.1 Introduction -- 4.2 Physics of Plasma -- 4.3 Methods of Generation -- 4.3.1 Dielectric Barrier Discharge (DBD) -- 4.3.2 Glow Discharge -- 4.3.3 Plasma Jet -- 4.3.4 Corona Discharge -- 4.3.5 High Voltage Pulse Discharge -- 4.4 Principles of Cold Plasma Decontamination -- 4.5 Plasma SpeciesÂf Role in Microbial Inactivation -- 4.5.1 Reactive Oxygen and Reactive Nitrogen Species -- 4.6 Cold Plasma Affecting Microbial Cells -- 4.6.1 Effect on Cell Morphology -- 4.6.2 Impact on the Cell Membrane -- 4.6.3 Effect on Nucleic Acids -- 4.6.4 Impact on Enzyme and Proteins Activity -- 4.7 Limitations -- 4.8 Conclusion and Future Prospects -- References -- Chapter 5 Food Extrusion: An Approach to Wholesome Product -- 5.1 Introduction. | |
| 5.2 Principle and Components of Extrusion Equipment -- 5.3 Types of Extruders -- 5.3.1 Single Screw Extruders -- 5.3.2 Twin Screw Extruders -- 5.4 Food Product Based on Extrusion Technology -- 5.5 Effect of Extrusion Cooking on Nutritional Aspects of Food -- 5.6 New Research Area of Byproduct Waste Utilization -- 5.7 Conclusion -- References -- Chapter 6 Image Processing Technology, Imaging Techniques, and Their Application in the Food Processing Sector -- 6.1 Introduction -- 6.2 Image Processing Technology -- 6.2.1 Image Acquisition -- 6.2.2 Image Pre-Processing -- 6.2.3 Image Segmentation -- 6.2.4 Feature Extraction -- 6.2.5 Classification -- 6.3 Machine Learning Algorithms -- 6.4 Industrial Applications -- 6.5 Novel Imaging Techniques and Their Applications -- 6.5.1 Near Infrared Imaging -- 6.5.2 Multispectral and Hyperspectral Imaging -- 6.5.3 Raman Imaging -- 6.5.4 Laser Light Backscattering Imaging -- 6.5.5 Structured-Illumination Reflectance Imaging -- 6.5.6 Optical Coherence Tomography -- 6.6 Challenges and Opportunities -- References -- Chapter 7 Active and Passive Modified Atmosphere Packaging: Recent Advances -- 7.1 Introduction -- 7.2 Modified Atmosphere Packaging -- 7.2.1 Passive MAP -- 7.2.1.1 Gases Utilised in Modified Atmosphere Packaging -- 7.2.2 Active MAP -- 7.2.2.1 Active Ingredients -- 7.2.2.2 Dynamics of MAP -- 7.2.2.3 Design of Modified Atmosphere Packaging -- 7.2.2.4 Packaging Materials Used in MAP -- 7.2.3 MAP Combined with Other Preservative Techniques -- 7.2.3.1 Heat Treatment -- 7.2.3.2 Irradiation -- 7.2.3.3 UV Light Radiation -- 7.2.3.4 Ozone Gas -- 7.2.3.5 Edible or Wax Coatings -- 7.2.4 Effect of MAP on Quality of Fresh Produce -- 7.3 Final Remarks -- References -- Chapter 8 Membrane Processing Techniques in Food Engineering -- 8.1 Introduction -- 8.2 Overview of Membranes -- 8.3 Types of Membrane Separation Processes. | |
| 8.3.1 Pressure-Driven Processes -- 8.3.2 Filtration Spectrum -- 8.4 Filtration Modes -- 8.4.1 Dead-End Filtration -- 8.4.2 Crossflow Filtration -- 8.4.3 Hybrid-Flow Filtration -- 8.5 Membrane Structure -- 8.6 Important Terms Related to Membrane Processes -- 8.7 Operational Requirements of Membranes -- 8.8 Theoretical Models for Membrane Processes -- 8.9 Factors Affecting the Separation Processes -- 8.10 Major Advantages of Membranes -- 8.11 Microfiltration -- 8.11.1 Microfiltration Applications by Industry -- 8.12 Ultrafiltration -- 8.12.1 UF Applications -- 8.13 Nanofiltration -- 8.13.1 Applications of Nanofiltration -- 8.14 Application of Membrane Separation in Food Industry -- 8.15 Conclusion -- References -- Chapter 9 Nano Technology in Food Packaging -- 9.1 Introduction -- 9.2 Nanomaterials -- 9.2.1 Silver Nanomaterial (AgNPs) -- 9.2.2 Titanium Dioxide (TiO2) -- 9.2.3 Montmorillonite Clay (Nanoclay) -- 9.2.4 Nano Zinc Oxide -- 9.2.5 Nano Silica -- 9.2.6 Carbon Nanotubes (CNTs) -- 9.2.7 Nano Starch -- 9.2.8 Nanocellulose -- 9.3 Use of Nanotechnology in Improved Packaging -- 9.3.1 Improving the Mechanical Strength and Permeability Properties -- 9.3.2 Improving Thermal Stability -- 9.3.3 Accelerating the Biodegradation Process -- 9.4 Use of Nanotechnology in Active Packaging -- 9.4.1 Antimicrobial Packaging -- 9.4.2 Nanoemulsion -- 9.4.3 Oxygen Scavengers -- 9.4.4 Immobilization of Enzymes -- 9.5 Use of Nanotechnology in Smart Packaging -- 9.5.1 Oxygen Sensors -- 9.5.2 Nanosensors for Detection of Pathogens -- 9.5.3 Freshness Indicators -- 9.5.4 Time Temperature Indicators -- 9.6 Toxicological Aspects, Safety Consideration, and Migration of Nanoparticles -- 9.7 Future Outlook and Conclusion -- References -- Chapter 10 Polysaccharide-Based Bionanocomposites for Food Packaging -- 10.1 Introduction -- 10.2 Classification of Polysaccharides. | |
| 10.2.1 Plant-Based Polysaccharides -- 10.2.1.1 Starch -- 10.2.1.2 Cellulose -- 10.2.1.3 Galactomannans -- 10.2.2 Animal-Based Polysaccharides -- 10.2.2.1 Chitosan -- 10.2.2.2 Carrageenan -- 10.2.3 Microorganism-Based Polysaccharides -- 10.2.3.1 Xanthan Gum -- 10.2.3.2 Gellan Gum -- 10.2.3.3 Pullulan -- 10.2.3.4 FucoPol -- 10.3 Extraction and Purification of Polysaccharides -- 10.3.1 Extraction of Polysaccharides -- 10.3.1.1 Hot Water Extraction -- 10.3.1.2 Sequential Extraction Method -- 10.3.1.3 Dilute Alkali-Water Extraction -- 10.3.1.4 Microwave-Assisted Extraction -- 10.3.1.5 Ultrasound-Assisted Extraction -- 10.3.1.6 Enzyme-Assisted Extraction -- 10.3.1.7 Subcritical Water Extraction -- 10.3.2 Purification Techniques -- 10.3.2.1 Fractional Precipitation -- 10.3.2.2 Chromatographic Techniques -- 10.4 Polysaccharide-Based Bionanocomposite Fabrication Techniques -- 10.4.1 Solution Intercalation -- 10.4.2 In Situ Intercalative Polymerization -- 10.4.3 Melt Intercalation -- 10.4.4 Extrusion -- 10.4.5 Electrospinning Technique -- 10.4.6 Freeze-Drying Technique -- 10.5 Polysaccharide-Based Nanocomposites: Classification and Food Applications -- 10.5.1 Polysaccharide-Based Nanocomposites with Graphene/Carbon Nanotubes -- 10.5.2 Polysaccharide-Based Nanocomposites with Metal Oxides -- 10.5.2.1 Silver-Based Nanoparticles -- 10.5.2.2 Zinc Oxide Nanoparticles -- 10.5.2.3 Copper Oxide Nanoparticles -- 10.5.2.4 Titanium Dioxide Nanoparticles -- 10.5.3 Polysaccharides-Based Nanocomposites with Other Reinforcement Materials -- 10.5.3.1 Bionanocomposites Based on Starch -- 10.5.3.2 Bionanocomposites Based on Chitosan -- 10.5.3.3 Bionanocomposites Based on Cellulose -- 10.6 Conclusions -- References -- Chapter 11 Smart, Intelligent, and Active Packaging Systems for Shelf-Life Extension of Foods -- 11.1 Introduction -- 11.2 Novel Types of Food Packaging. | |
| 11.3 Regulatory Framework. | |
| Sommario/riassunto: | This book, part of a comprehensive series on bioprocessing in food science, focuses on nonthermal food engineering operations. It covers recent technological developments in food science and food process engineering, including microbial fermentation, enzyme technology, genetic engineering, and bioreactor design. The series aims to disseminate knowledge to students, researchers, and professionals in the food industry, enabling them to make informed decisions regarding technology adoption and implementation. The book addresses the challenges posed by population growth and climate change, emphasizing the role of bioprocessing in ensuring a sustainable food supply. It serves as an essential resource for academia and industry, providing insights into the practical applications and future research directions in food bioprocessing. |
| Titolo autorizzato: | Nonthermal Food Engineering Operations ![]() |
| ISBN: | 9781119776468 |
| 1119776465 | |
| 9781119776451 | |
| 1119776457 | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9911019519603321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilitĂ qui |