Vai al contenuto principale della pagina

Nonlinear equations with small parameter . Volume 1 Oscillations and resonances / / Sergey G. Glebov, Oleg M. Kiselev, Nikolai N. Tarkhanov



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Glebov Sergey G. Visualizza persona
Titolo: Nonlinear equations with small parameter . Volume 1 Oscillations and resonances / / Sergey G. Glebov, Oleg M. Kiselev, Nikolai N. Tarkhanov Visualizza cluster
Pubblicazione: Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2017
©2017
Descrizione fisica: 1 online resource (340 pages)
Disciplina: 531.32
Soggetto topico: Oscillations
Soggetto non controllato: Nonlinear equations
approximate solutions
global asymptotics
small parameter
Classificazione: SK 520
Persona (resp. second.): KiselevOleg M.
TarkhanovNikolai N.
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Frontmatter -- Preface -- Contents -- Introduction -- 1 Asymptotic expansions and series -- 2 Asymptotic methods for solving nonlinear equations -- 3 Perturbation of nonlinear oscillations -- 4 Nonlinear oscillator in potential well -- 5 Autoresonances in nonlinear systems -- 6 Asymptotics for loss of stability -- 7 Systems of coupled oscillators -- Bibliography -- Index
Sommario/riassunto: This two-volume monograph presents new methods of construction of global asymptotics of solutions to nonlinear equations with small parameter. These allow one to match the asymptotics of various properties with each other in transition regions and to get unified formulas for the connection of characteristic parameters of approximate solutions. This approach underlies modern asymptotic methods and gives a deep insight into crucial nonlinear phenomena in the natural sciences. These include the outset of chaos in dynamical systems, incipient solitary and shock waves, oscillatory processes in crystals, engineering applications, and quantum systems. Apart from being of independent interest, such approximate solutions serve as a foolproof basis for testing numerical algorithms. This first volume presents asymptotic methods in oscillation and resonance problems described by ordinary differential equations, whereby the second volume will be devoted to applications of asymptotic methods in waves and boundary value problems. Contents Asymptotic expansions and series Asymptotic methods for solving nonlinear equations Nonlinear oscillator in potential well Autoresonances in nonlinear systems Asymptotics for loss of stability Systems of coupled oscillators
Titolo autorizzato: Nonlinear equations with small parameter  Visualizza cluster
ISBN: 3-11-038272-5
3-11-033568-9
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910808419503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: De Gruyter series in nonlinear analysis and applications ; ; Volume 23/1.