Vai al contenuto principale della pagina

Nonlinear Wave Equations / / by Tatsien Li, Yi Zhou



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Li Tatsien Visualizza persona
Titolo: Nonlinear Wave Equations / / by Tatsien Li, Yi Zhou Visualizza cluster
Pubblicazione: Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2017
Edizione: 1st ed. 2017.
Descrizione fisica: 1 online resource (XVI, 391 p. 2 illus.)
Disciplina: 515.625
Soggetto topico: Differential equations, Partial
Difference equations
Functional equations
Calculus of variations
Partial Differential Equations
Difference and Functional Equations
Calculus of Variations and Optimal Control; Optimization
Persona (resp. second.): ZhouYi
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Introduction -- Linear Wave functions -- Sobolev inequality with Decay -- Estimates for solutions for linear wave equation -- Estimates for composition Function.
Sommario/riassunto: This book focuses on nonlinear wave equations, which are of considerable significance from both physical and theoretical perspectives. It also presents complete results on the lower bound estimates of lifespan (including the global existence), which are established for classical solutions to the Cauchy problem of nonlinear wave equations with small initial data in all possible space dimensions and with all possible integer powers of nonlinear terms. Further, the book proposes the global iteration method, which offers a unified and straightforward approach for treating these kinds of problems. Purely based on the properties of solut ions to the corresponding linear problems, the method simply applies the contraction mapping principle.
Titolo autorizzato: Nonlinear Wave Equations  Visualizza cluster
ISBN: 3-662-55725-8
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910254290903321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Series in Contemporary Mathematics, . 2364-009X ; ; 2