Vai al contenuto principale della pagina

Nature-Inspired Optimizers : Theories, Literature Reviews and Applications / / edited by Seyedali Mirjalili, Jin Song Dong, Andrew Lewis



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Nature-Inspired Optimizers : Theories, Literature Reviews and Applications / / edited by Seyedali Mirjalili, Jin Song Dong, Andrew Lewis Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Edizione: 1st ed. 2020.
Descrizione fisica: 1 online resource (XVI, 238 p. 108 illus., 101 illus. in color.)
Disciplina: 006.3823
Soggetto topico: Computational intelligence
Artificial intelligence
Mathematical optimization
Control engineering
Computational Intelligence
Artificial Intelligence
Optimization
Control and Systems Theory
Persona (resp. second.): MirjaliliSeyedali
Song DongJin
LewisAndrew
Nota di bibliografia: Includes bibliographical references.
Nota di contenuto: Preface -- Chapter 1. Introduction to Nature-inspired Algorithms -- Chapter 2. Ant Colony Optimizer: Theory, Literature Review, and Application in AUV Path Planning.-Chapter 3. Ant Lion Optimizer: Theory, Literature Review, and Application in Multi-layer Perceptron Neural Network -- Chapter 4. Dragonfly Algorithm: Theory, Literature Review, and Application in Feature Selection -- Chapter 5. Genetic Algorithm: Theory, Literature Review, and Application in Image Reconstruction etc.
Sommario/riassunto: This book covers the conventional and most recent theories and applications in the area of evolutionary algorithms, swarm intelligence, and meta-heuristics. Each chapter offers a comprehensive description of a specific algorithm, from the mathematical model to its practical application. Different kind of optimization problems are solved in this book, including those related to path planning, image processing, hand gesture detection, among others. All in all, the book offers a tutorial on how to design, adapt, and evaluate evolutionary algorithms. Source codes for most of the proposed techniques have been included as supplementary materials on a dedicated webpage.
Titolo autorizzato: Nature-Inspired Optimizers  Visualizza cluster
ISBN: 3-030-12127-5
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910484569403321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Studies in Computational Intelligence, . 1860-949X ; ; 811