Vai al contenuto principale della pagina
| Autore: |
Inamuddin
|
| Titolo: |
Nanoionics : Fundamentals and Applications
|
| Pubblicazione: | Newark : , : John Wiley & Sons, Incorporated, , 2025 |
| ©2025 | |
| Edizione: | 1st ed. |
| Descrizione fisica: | 1 online resource (363 pages) |
| Disciplina: | 541.372 |
| Altri autori: |
AltalhiTariq
LuqmanMohammad
CruzJorddy Neves
|
| Nota di contenuto: | Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Nanoionics for Energy Storage and Conversion: Materials and Technologies -- 1.1 Introduction -- 1.2 Nanoionics for Energy Storage -- 1.2.1 Nanoionics for Batteries -- 1.2.2 Nanoionics for Supercapacitors -- 1.2.3 Nanoionics for Fuel Cell -- 1.3 Nanostructured Materials of Transport Behavior -- 1.3.1 Accumulating of Space Charges -- 1.3.2 Space Charges Depletion -- 1.4 Nanomaterials for Energy Storage Applications -- 1.4.1 Nanoionics Application and Technologies in Fuel Cells -- 1.4.2 Nanoionics Application and Technologies in Lithium Batteries -- 1.4.2.1 Nanocrystalline Electrodes -- 1.4.2.2 Shape of the Curve and Cell Voltage -- 1.4.2.3 Low Potential Extra Storage of Lithium -- 1.4.2.4 Interfacial Lithium Storage: Phenomenological Model -- 1.4.3 Nanoionics Application and Technologies in Supercapacitors -- 1.4.3.1 Novel Nanoionic Phenomena, Effects, and Physicochemical Nano Systems -- 1.4.3.2 Ionic Conductors Classification: Innovative Superionic Conductors -- 1.4.3.3 AdSIC/EC Heterojunctions for Ion-Electron Mechanisms -- 1.4.3.4 Creation of Nanoionic Supercapacitors: Models and Methods -- 1.4.3.5 AdSIC-Based Devices -- 1.4.3.6 Deep-Sub-Voltage Nanoelectronics as Impulse Storage Capacitors in -- 1.4.3.7 Micron Size Supercapacitors Based Advanced Superionic Conductors -- 1.4.4 Nanoionics Application and Technologies in Novel Memory Devices -- 1.4.4.1 Resistive-Switching Memories of Nanoionics -- 1.4.4.2 Memristors for Non-Volatile Memories (NVM) -- 1.4.4.3 Memristors for Artificial Synapses -- 1.4.4.4 Recognition of LTP and STP in Oxide Memristors -- 1.4.4.5 Realization of STDP in Oxide Memristors -- 1.5 Prospects and Outlook: Why Nanoionics? -- 1.5.1 Future of Nanoionic Devices -- 1.6 Conclusions -- References. |
| Chapter 2 Fundamentals of Nanoionics and their Applications -- 2.1 Introduction -- 2.2 Applications -- 2.2.1 Employment of Interface - Dominant Materials (IDMs) in Novel Solid State Power Devices -- 2.2.1.1 Micro Solid Oxide Fuel Cells (µSOFC) -- 2.2.1.2 Ion Gated Thermoelectrics -- 2.2.1.3 Solid Oxide Photoelectrochemical Cells (SOPECs) -- 2.2.2 Nanoarchitectonics for Atom-Based Devices -- 2.2.3 Biological Nanoionics -- 2.2.4 Artificial Nanoionics -- 2.2.4.1 Liquid Nanoionics -- 2.2.5 Utilization of Nanochannels for Electrochemical Energy Storage -- 2.2.5.1 Lithium-Ion Batteries (LIB) -- 2.2.5.2 Lithium Sulfur Batteries -- 2.2.5.3 Lithium Organic Batteries (LOB) -- 2.2.6 Nanocrystalline Structures -- 2.2.6.1 Sol-Gel (Chemical Deposition Method) -- 2.2.6.2 Microstructure Investigation -- 2.2.6.3 Storage of Hydrogen -- 2.3 Future Perspective -- 2.4 Conclusion -- References -- Chapter 3 Nanomaterials for Nanoionics Applications: Synthesis, Characterization and Device Integration -- 3.1 Introduction -- 3.2 Synthesis of Nanomaterials -- 3.2.1 Chemical Route of Synthesis of Nanomaterials -- 3.2.2 Physical Route of Synthesis of Nanomaterials -- 3.2.3 Biological Route of Synthesis of Nanomaterials -- 3.3 Characterization of Nanomaterials -- 3.3.1 Surface Morphology, Surface Area, Size and Shape of Nanoparticles -- 3.3.2 Analysis of Elemental and Mineral Composition -- 3.3.3 Structures and Bonds in Nanoparticles -- 3.3.4 Magnetic Properties of Nanoparticles -- 3.4 Device Integration of Nanoionics -- 3.4.1 Resistive Switching Memories -- 3.4.2 Lithium Batteries -- 3.5 Summary and Future Prospects -- References -- Chapter 4 Nano-Porous Silica in Devices and Ion-Based Systems - Unveiling the Design, Fabrication, and Diverse Applications -- 4.1 Introduction -- 4.2 Methods Used for Synthesis of Nanoporous Silica. | |
| 4.3 Applications of Nanoporous Silica in Various Fields -- 4.3.1 Biomedical -- 4.3.2 Water Decontamination -- 4.3.3 Energy -- 4.4 Conclusion -- Acknowledgement -- References -- Chapter 5 Bioinspired Nanoionics for Biomedical and Bioelectronic Applications -- 5.1 Introduction -- 5.2 Biomimetic Ion Transport Systems -- 5.2.1 Ion Channels -- 5.2.2 Ion Pumps -- 5.2.3 Ion Exchangers -- 5.2.4 Biomimetic Ion Transport Systems in Drug Delivery -- 5.2.5 Biomedical Applications -- 5.2.5.1 Drug Delivery -- 5.2.5.2 Bioimaging -- 5.2.5.3 Tissue Engineering -- 5.2.6 Bioelectronic Applications -- 5.2.6.1 Ion-Selective Sensors -- 5.2.6.2 Neuroprosthetics -- 5.2.6.3 Energy Storage -- 5.3 Biomimetic Materials in Bioinspired Nanoionics -- 5.3.1 Bioresponsive Polymers -- 5.3.2 Bioinspired Nanocomposites -- 5.3.3 Nanoparticle-Based Ion Carriers -- 5.4 Biomedical Breakthroughs -- 5.4.1 Organelle-Targeted Drug Delivery -- 5.4.2 Theranostics: Simultaneous Therapy and Imaging -- 5.4.3 Artificial Biomimetic Organs -- 5.5 Bioelectronic Innovations -- 5.5.1 Bioelectronic Skin -- 5.5.2 Ionic Circuitry -- 5.5.3 Bioelectronic Therapeutics -- 5.6 Biocompatibility and Safety -- 5.7 Ethical and Regulatory Consideration -- 5.8 Conclusion -- References -- Chapter 6 Nanoionics in Biomedical Applications: Diagnostic and Therapeutic Approaches -- 6.1 Introduction to Nanoionics -- 6.2 Types of Nanoionics -- 6.2.1 Biological Nanoionics -- 6.2.2 Artificial Nanoionics -- 6.2.3 Biological-Artificial Hybrid Nanoionics -- 6.3 General Applications of Nanoionics -- 6.4 Applications of Nanoionics in Diagnosis -- 6.5 Applications of Nanoionics in Therapeutics -- 6.5.1 Nanoionics in Cancer Therapy -- 6.5.2 Nanoionics as Antibiotics -- 6.6 Conclusions -- References -- Chapter 7 Nanoionics in Electronics and Optoelectronics: Advances and Applications -- 7.1 Introduction. | |
| 7.2 Development of Nanoionic Materials -- 7.2.1 Electronics -- 7.2.2 Optoelectronics -- 7.3 Application of Nanoionics in Electronics -- 7.3.1 Resistive Switching -- 7.3.2 Memristive Devices -- 7.3.2.1 Redox Reactions Initiated by the Migration of Cations -- 7.3.2.2 Redox Reactions Initiated by the Migration of Anions -- 7.3.3 Transistor -- 7.4 Application of Nanoionics in Optoelectronics -- 7.4.1 Light Emitting Diode -- 7.4.2 Solar Cell -- 7.4.3 Photo Assisted Switch -- 7.4.4 High-Performance Optical Sensors -- 7.5 Future Perspectives and Challenges -- 7.6 Conclusions -- References -- Chapter 8 Challenges and Opportunities in Nanoionics: Towards Breakthrough Applications -- 8.1 Introduction -- 8.2 Mechanism Behind Nanoionics -- 8.3 Significance of Nanomaterials in Nanoionics -- 8.3.1 Metal Oxide Nanomaterials -- 8.3.2 Ceramic Nanomaterials -- 8.3.3 Polymeric Nanomaterials -- 8.3.4 Carbon-Based Nanomaterials -- 8.3.5 Two-Dimensional (2D) Materials -- 8.3.6 Hybrid Nanostructures -- 8.3.7 Nanocomposites -- 8.4 Energy Storage Applications -- 8.5 Emerging Electronics -- 8.5.1 Memory Devices -- 8.5.2 Sensors -- 8.5.3 Energy Harvesting Devices -- 8.6 Challenges in Nanoionics Technology -- 8.7 Sustainability and Ethical Considerations in Nanoionics -- 8.8 Cross-Disciplinary Opportunities -- 8.9 Educational Outreach and Knowledge Transfer -- 8.10 Significance of Nanoionics in Industrial Revolution -- 8.11 Innovation and Future Prospects -- Conclusion -- References -- Chapter 9 Nanoscale Modeling and Simulation in Nanoionics: Insights into Material Behavior and Device Design -- 9.1 Introduction -- 9.2 Modeling and Simulation Methods in Nanoionics -- 9.2.1 Molecular Dynamic Simulations (MD) -- 9.2.2 Charge Transport Model (CTM) for Nanoionic Memristors -- 9.2.3 Linear Drift Memristor Model -- 9.2.4 SPICE Model for Memristors. | |
| 9.2.5 Structure-Dynamic Approach (SDA) -- 9.2.6 Finite Element Method (FEM) Model -- 9.3 Nanoionic Memristors -- 9.3.1 Types of Memristors -- 9.4 Resistor-Switching Devices Design -- 9.4.1 A Cation-Based Resistive-Switching Effect -- 9.4.2 B Anion-Based Resistive-Switching Effect -- 9.4.3 Cation and Anion-Based Resistive-Switching Effect -- 9.5 Quantum-Point Contacts -- 9.6 Magnetic Nanostructures -- 9.7 Selector Devices -- 9.8 Future Perspective -- References -- Chapter 10 Commercialization and Industrial Aspects of Nanoionics: Lab to Market -- 10.1 Introduction -- 10.1.1 Importance in Emerging Technologies -- 10.1.1.1 Advancements in Energy Storage Applications -- 10.1.1.2 Next-Generation Electronics -- 10.1.1.3 Transformation in Sensor Technologies -- 10.2 Commercialization Challenges -- 10.2.1 Navigating Health and Environmental Concerns -- 10.2.2 Ensuring Safety in Nanoionic Applications -- 10.2.3 The Role of Public Awareness and Acceptance -- 10.2.4 Mitigating Risks Associated with Nanoproduct Exposure -- 10.3 Nano-Ionic Memory: Implications for the Economy -- 10.4 Future Prospects -- 10.5 Conclusion -- References -- Chapter 11 Ion Migration and Defects in Nanostructures: Implications for Device Performance and Reliability -- 11.1 Introduction -- 11.2 Ion Migration in Nanoionics -- 11.2.1 Types of Migration -- 11.2.1.1 Cation Migration -- 11.2.1.2 Anion Migration -- 11.3 Effect of Local Ion Migration on Device Performance -- 11.3.1 Modified Electrical Properties -- 11.3.2 Material Degradation -- 11.3.3 Memory Devices and Resistive Switching -- 11.3.4 Battery Performance -- 11.3.5 Corrosion and Chemical Reactions -- 11.3.6 Effect of Neighbourhood Ion Migration on Tool Overall Performance -- 11.4 Limitations of Ion Migration -- 11.5 Defects in Nanoionics -- 11.5.1 Point Defect Chemistry -- 11.5.2 Size Defects. | |
| 11.5.3 Bulk Defects and Interfacial Thermodynamics. | |
| Sommario/riassunto: | This book offers a comprehensive and cutting-edge overview of nanoionics, covering fundamental principles, experimental techniques, emerging trends, and advanced topics, making it a one-stop resource for both beginners and professionals in the field. |
| Titolo autorizzato: | Nanoionics ![]() |
| ISBN: | 1-394-31394-2 |
| 1-394-31393-4 | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9911022470503321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |