Vai al contenuto principale della pagina

NMR of biomolecules : towards mechanistic systems biology / / edited by Ivano Bertini, Kathleen S. McGreevy, and Giacomo Parigi



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: NMR of biomolecules : towards mechanistic systems biology / / edited by Ivano Bertini, Kathleen S. McGreevy, and Giacomo Parigi Visualizza cluster
Pubblicazione: Weinheim, : Wiley-VCH
Chichester, : John Wiley [distributor], 2012
Edizione: 1st ed.
Descrizione fisica: 1 online resource (653 p.)
Disciplina: 572
Soggetto topico: Biomolecules
Biological systems
Nuclear magnetic resonance spectroscopy
Systems biology
Altri autori: BertiniIvano  
McGreevyKathleen S  
ParigiGiacomo  
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographic references and index.
Nota di contenuto: NMR of Biomolecules: Towards Mechanistic Systems Biology; Contents; Preface; List of Contributors; List of Abbreviations; Part One: Introduction; 1 NMR and its Place in Mechanistic Systems Biology; 2 Structure of Biomolecules: Fundamentals; 2.1 Structural Features of Proteins; 2.1.1 Introduction: From Primary to Quaternary Structure; 2.1.2 Geometrical and Conformational Properties; 2.1.2.1 Backbone Dihedral Angles; 2.1.2.2 Side-Chain Dihedral Angles; 2.1.3 Secondary Structure Elements in Proteins; 2.1.4 Prediction of Secondary Structure
2.1.5 Structural Motifs and Structural Domains - Combination of Secondary Structural Elements and Structural Motifs2.1.6 Types of Folds and their Classification; 2.1.6.1 Folds of the α Class; 2.1.6.2 Folds in the β Class; 2.1.6.3 Folds in the α/β Class; 2.1.6.4 Folds in the α + β Class; 2.1.7 Tertiary Structure; 2.1.8 Quaternary Structure; 2.2 Nucleic Acids; 2.2.1 Introduction; 2.2.1.1 Conformations; 2.2.2 DNA Structure; 2.2.2.1 B-DNA and Derivatives; 2.2.2.2 A-DNA; 2.2.2.3 Z-DNA; 2.2.2.4 Nonstandard DNA Structures; 2.2.2.4.1 Circular DNA; 2.2.2.4.2 Helical Junction; 2.2.2.4.3 Triple Helix
2.2.2.4.4 i-Motif2.2.2.4.5 Quadruplex DNA; 2.2.3 RNA Structure; 2.2.3.1 Regular RNA Structure - A-Form Helices; 2.2.3.2 Mismatches, Bulges, and Unusual Base Pairing; 2.2.3.3 Reversal and Alteration of Strand Direction: Commonly Observed Loop and Turn Motifs; 2.2.3.3.1 U-Turn; 2.2.3.3.2 K-Turn; 2.2.3.3.3 C-Loop; 2.2.3.3.4 E-Loop; 2.2.3.4 Tetraloops and Tetraloop-Receptor Contact; 2.2.3.5 Higher-Order RNA Tertiary Structure Elements: Coaxial Stacking Motifs; 2.2.3.6 DNA-RNA Hybrids; 3 What Can be Learned About the Structure and Dynamics of Biomolecules from NMR; 3.1 Proteins Studied by NMR
3.1.1 Why NMR Structures?3.1.2 NMR Bundle; 3.1.3 Protein Dynamics; 3.1.4 Intermolecular Interactions Involving Proteins; 3.2 Nucleic Acids Studied by NMR; 3.2.1 Structure, Mobility, and Function; Part Two: Role of NMR in the Study of the Structure and Dynamics of Biomolecules; 4 Determination of Protein Structure and Dynamics; 4.1 Determination of Protein Structures; 4.1.1 Resonance Assignment; 4.2 NMR Restraints; 4.2.1 Distance Restraints; 4.2.2 Dihedral Angles; 4.2.3 Residual Dipolar Couplings; 4.3 Structure Calculations; 4.3.1 Traditional; 4.3.2 Automated NOESY Assignment
4.3.3 Energy Refinement of Protein Structures4.3.4 Chemical Shift-Based Approaches for Protein Structure Determination; 4.4 Validation of Protein Structures; 4.4.1 Experimental Data; 4.4.2 Geometric Quality; 4.5 Protein Dynamics and NMR Observables; 4.5.1 NMR Observables Affected by Dynamics; 4.5.2 NMR Experiments to Measure Dynamics and their Interpretation; 4.6 Protocols; 4.6.1 Sample Labeling; 4.6.2 NMR Assignment; 4.6.3 Manual Collection of Restraints; 4.6.4 Structure Calculations; 4.6.5 Structure Refinement; 4.6.6 Chemical Shift-Based Structure Calculations; 4.6.7 Structure Validation
4.6.8 Protein Dynamics
Sommario/riassunto: NMR is one of the most powerful methods for imaging of biomolecules. This book is the ultimate NMR guide for researchers in the biomedical community and gives not only background and practical tips but also a forward looking view on the future of NMR in systems biology.
Altri titoli varianti: Nuclear magnetic resonance of biomolecules
Titolo autorizzato: NMR of biomolecules  Visualizza cluster
ISBN: 9781283644037
1283644037
9783527644520
3527644520
9783527644513
3527644512
9783527644506
3527644504
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910138034503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui