Vai al contenuto principale della pagina
| Autore: |
Pisarchik A. N (Alexander N.)
|
| Titolo: |
Multistability in physical and living systems : characterization and applications / / Alexander N. Pisarchik, Alexander E. Hramov
|
| Pubblicazione: | Cham, Switzerland : , : Springer, , [2022] |
| ©2022 | |
| Descrizione fisica: | 1 online resource (417 pages) |
| Disciplina: | 515.39 |
| Soggetto topico: | Nonlinear theories |
| Nota di bibliografia: | Includes bibliographical references and index. |
| Nota di contenuto: | Intro -- Preface -- References -- Acknowledgements -- Contents -- 1 What is Multistability -- 1.1 Historical Overview -- 1.2 Mathematical Basis -- 1.2.1 Main Definitions -- 1.2.2 Attractors and Basins of Attraction -- 1.2.3 Smooth and Fractal Basins -- 1.2.4 Wada Basins -- 1.2.5 Riddled Basins -- 1.3 Stability of Invariant Sets -- 1.3.1 Lyapunov Stability -- 1.3.2 Asymptotic Stability -- 1.3.3 Exponential Stability -- 1.3.4 Orbital Stability -- 1.3.5 Structural Stability -- 1.3.6 Linear Stability Analysis -- 1.4 Basin Stability -- 1.4.1 Resilience -- 1.4.2 Integral Stability -- 1.4.3 Final State Sensitivity -- 1.4.4 Survivability -- 1.4.5 Basin Catastrophe -- 1.4.6 Basin Integrity -- 1.5 System Complexity -- 1.5.1 Basin Entropy -- 1.5.2 Spectral Entropy -- 1.5.3 Sample Entropy -- References -- 2 Emergence of Multistability -- 2.1 Bifurcations Giving Rise to Multistability -- 2.1.1 Pitchfork Bifurcation -- 2.1.2 Saddle-Node Bifurcation -- 2.1.3 Andronov-Hopf Bifurcation -- 2.1.4 Neimark-Sacker Bifurcation -- 2.1.5 Multiple Limit Cycle Bifurcation -- 2.1.6 Infinite-Period Bifurcation -- 2.1.7 Inverse Gluing Bifurcation -- 2.1.8 Symmetry-Increasing Bifurcation -- 2.2 Mechanisms Leading to Multistability -- 2.2.1 Homoclinic Tangencies -- 2.2.2 Weak Dissipation -- 2.2.3 Clustering -- 2.2.4 Phase Multistability -- 2.2.5 Positive Feedback -- 2.2.6 Delayed Feedback -- 2.2.7 Periodic Forcing -- 2.2.8 Symmetry -- 2.2.9 Structural Multistability -- 2.3 Methods to Reveal Multistability -- 2.3.1 Varying Initial Conditions -- 2.3.2 Continuation Method -- 2.3.3 External Short Pulse -- 2.3.4 Stochastic Perturbation -- 2.3.5 Critical Velocity Surfaces -- 2.3.6 Complete Bifurcation Group -- 2.3.7 Quantifying Basins of Attraction -- 2.4 Methods for Detecting Hidden Attractors -- 2.4.1 Homotopy and Continuation Methods -- 2.4.2 Amplitude Control. |
| 2.4.3 Offset Boosting -- 2.4.4 Nested Double-Scroll Attractors -- 2.4.5 Final-State Machine -- References -- 3 Manifestation of Multistability in Different Systems -- 3.1 Multistability in Discrete Systems -- 3.1.1 Hénon Map -- 3.1.2 Dissipative Standard Nontwist Map -- 3.2 Multistability in Continuous Systems -- 3.2.1 Duffing Oscillator -- 3.2.2 Rössler-Like Oscillator -- 3.2.3 Lorenz-Like System -- 3.2.4 Chua Oscillator -- 3.2.5 Jerk Systems -- 3.2.6 Fractional-Order systems -- 3.3 Multistability in Coupled Systems -- 3.3.1 Coupled Quadratic Maps -- 3.3.2 Coupled Hénon Maps -- 3.3.3 Coupled Duffing Oscillators -- 3.3.4 Coupled Rössler Oscillators -- 3.3.5 Coupled Lorenz Oscillators -- 3.4 Multistability in Neuronal Systems -- 3.4.1 Single Neuron -- 3.4.2 Coupled Neurons -- 3.5 Other Examples of Multistable Systems -- 3.5.1 Mechanical Systems -- 3.5.2 Micro- and Nanosystems -- 3.5.3 Thermochemical Systems -- 3.5.4 Climate -- 3.5.5 Ecology -- 3.5.6 Biosystems -- 3.5.7 Astrosystems -- References -- 4 Multistability in Lasers -- 4.1 Laser as a Nonlinear Dynamical System -- 4.1.1 History of Laser Dynamics -- 4.1.2 Dynamical Classification of Lasers -- 4.2 Multistability in Optical Systems -- 4.2.1 Optical Bistability -- 4.2.2 Spatial Multistability -- 4.2.3 Polarization Multistability -- 4.3 Multistability in CO2 Lasers -- 4.3.1 Loss-Modulated CO2 Laser -- 4.3.2 Targeting Attractors by Short Pulses -- 4.3.3 Bistability Induced by Resonant Perturbations -- 4.3.4 Bistability Induced by a Delayed Feedback -- 4.4 Multistability in Semiconductor Lasers -- 4.4.1 Semiconductor Laser with Delayed Feedback -- 4.4.2 Directly Modulated Semiconductor Laser -- 4.5 Multistability in Fiber Lasers -- 4.5.1 Loss-Modulated Fiber Laser -- 4.5.2 Pump-Modulated Fiber Laser -- References -- 5 Multistate Intermittency -- 5.1 Noise-Induced Escapes from Equilibria. | |
| 5.1.1 Multiple Quasipotential -- 5.1.2 Escape From a Fixed Point with Smooth Basin Boundaries -- 5.1.3 Escape From a Chaotic Attractor with a Fractal Basin Boundary -- 5.2 Coherence Resonance in Multistable Systems -- 5.2.1 Stochastic Resonance in Multistable Systems -- 5.2.2 Deterministic Coherence Resonance in a Chaotic Bistable System -- 5.2.3 Logical Stochastic Resonance -- 5.3 Characterization of Noise-Induced Multistate Intermittency -- 5.3.1 Mean Residence Times -- 5.3.2 Structural Properties of Noise-Induced Multistate Intermittency -- 5.3.3 Entropy Measures of Multistate Intermittency -- 5.3.4 Wavelet Transform Method for Detection of Coexisting Regimes -- 5.4 Manifestation of Noise-Induced Multistate Intermittency -- 5.4.1 Stochastic Bistable Chua System -- 5.4.2 Anti-coherence Resonance in a Bistable Neural Network -- 5.4.3 Multistate Intermittency in Semiconductor Lasers -- 5.5 Noise-Induced Preference of Attractors -- 5.5.1 Attractor Probability Density and Optimal Basin Size -- 5.5.2 Experimental Evidence of Noise-Induced Preference of Attractors -- 5.5.3 Extreme Events in Multistable Systems -- 5.5.4 Preference of Attractors in a Network of Coupled Oscillators -- 5.6 Multistate Intermittency in Deterministic Systems -- 5.6.1 Multistate Intermittency Induced by Periodic Forcing -- 5.6.2 Modulational Intermittency in a Semiconductor Laser -- References -- 6 Multistability in Complex Networks -- 6.1 Stability of Multistable Complex Networks -- 6.1.1 Single-Node Basin Stability -- 6.1.2 Multiple-Node Basin Stability -- 6.1.3 Resilience of Multistable Networks -- 6.1.4 Minimal Fatal Shock -- 6.1.5 Master Stability Function of Multistable Systems -- 6.2 Manifestation of Multistability in Different Networks -- 6.2.1 Network of Networks of Kuramoto Oscillators -- 6.2.2 Potential Landscape of a Network of Networks. | |
| 6.2.3 Ring-Coupled Oscillators -- 6.2.4 Structural Multistability in Boolean Networks -- 6.2.5 Multistate Chimeras -- 6.3 Multistability in Neural Networks -- 6.3.1 Multistability in Small Neural Circuits -- 6.3.2 Spatial Phase Multistability -- 6.3.3 Multistability in Inhibitory Neural Networks -- 6.3.4 Multistability in Artificial Neural Networks -- 6.3.5 Functional Connectivity in Neural Networks -- References -- 7 Extreme Multistability -- 7.1 Extreme Multistability in Continuous-Time Systems -- 7.1.1 Game Dynamical Systems -- 7.1.2 Hamiltonian-Driven Dissipative Systems -- 7.1.3 Complex-Coupled Systems -- 7.1.4 Variable-Boostable Systems -- 7.1.5 Systems with Hyperbolic Cosine Nonlinearity -- 7.1.6 Systems with Time-Periodic Forcing -- 7.2 Extreme Multistability in Discrete-Time Systems -- 7.2.1 Two-Dimensional Chaotic Map -- 7.2.2 Area-Preserving Lozi Map -- 7.3 Extreme Multistability in Memristive Systems -- 7.3.1 Charge-Controlled Memristive Model -- 7.3.2 Flux-Controlled Memristive Model -- 7.4 Application of Extreme Multistability in Cryptography and Secure Communication -- 7.4.1 Chaotic Cryptography Based on Extreme Multistability -- 7.4.2 Secure Communication Based on Extreme Multistability -- References -- 8 Multistability in Perception -- 8.1 Multistability in Different Sensory Modalities -- 8.1.1 Perceptual Decision-Making -- 8.1.2 Visual Perception -- 8.1.3 Auditory Perception -- 8.1.4 Tactile Perception -- 8.1.5 Olfactory Perception -- 8.2 Bistable Perception Models -- 8.2.1 Brain Noise Estimation -- 8.2.2 Simple Energy Model -- 8.2.3 Fokker-Plank Equation Attractor Model -- 8.2.4 Oscillatory Model -- 8.2.5 Advanced Perception Model with Adaptation and Noise -- 8.3 Physiological Experiments with Ambiguous Stimuli -- 8.3.1 Behavioral Experiment with Ambiguous Stimuli for Brain Noise Estimation -- 8.3.2 EEG Experiments. | |
| 8.3.3 MEG Experiments -- 8.4 Artificial Intelligence for Classification of Multistable Perceptual States -- 8.4.1 Recognition and Classification of Multistable Brain States Using Artificial Neuronal Networks -- 8.4.2 Detecting Human Uncertainty in Perception of Bistable Visual Stimuli Using Artificial Neural Networks -- 8.5 Brain-Computer Interfaces Based on Bistable Perception -- 8.5.1 Brain-Computer Interface for Monitoring and Controlling Alertness -- 8.5.2 Brain-to-Brain Interface for Enhancing Human Performance by Sharing Cognitive Load -- References -- 9 Concluding Remarks -- References -- Index. | |
| Titolo autorizzato: | Multistability in physical and living systems ![]() |
| ISBN: | 3-030-98396-X |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 996472060903316 |
| Lo trovi qui: | Univ. di Salerno |
| Opac: | Controlla la disponibilità qui |