Vai al contenuto principale della pagina

Multiple Information Source Bayesian Optimization / / by Antonio Candelieri, Andrea Ponti, Francesco Archetti



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Candelieri Antonio Visualizza persona
Titolo: Multiple Information Source Bayesian Optimization / / by Antonio Candelieri, Andrea Ponti, Francesco Archetti Visualizza cluster
Pubblicazione: Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Edizione: 1st ed. 2025.
Descrizione fisica: 1 online resource (169 pages)
Disciplina: 519.6
Soggetto topico: Mathematical optimization
Statistics
Machine learning
Optimization
Bayesian Inference
Machine Learning
Altri autori: PontiAndrea  
ArchettiFrancesco  
SabatellaAntonio  
Nota di contenuto: Preface -- Introduction -- MISO-AGP: dealing with multiple information sources via Augmented Gaussian Process -- MISO-AGP in action: selected applications -- Bayesian Optimization and Large Language Models -- References.
Sommario/riassunto: The book provides a comprehensive review of multiple information sources and multi-fidelity Bayesian optimization, specifically focusing on the novel "Augmented Gaussian Process” methodology. The book is important to clarify the relations and the important differences in using multi-fidelity or multiple information source approaches for solving real-world problems. Choosing the most appropriate strategy, depending on the specific problem features, ensures the success of the final solution. The book also offers an overview of available software tools: in particular it presents two implementations of the Augmented Gaussian Process-based Multiple Information Source Bayesian Optimization, one in Python -- and available as a development branch in BoTorch -- and finally, a comparative analysis against other available multi-fidelity and multiple information sources optimization tools is presented, considering both test problems and real-world applications. The book will be useful to two main audiences: 1. PhD candidates in Computer Science, Artificial Intelligence, Machine Learning, and Optimization 2. Researchers from academia and industry who want to implement effective and efficient procedures for designing experiments and optimizing computationally expensive experiments in domains like engineering design, material science, and biotechnology. .
Titolo autorizzato: Multiple Information Source Bayesian Optimization  Visualizza cluster
ISBN: 3-031-97965-6
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9911022454403321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: SpringerBriefs in Optimization, . 2191-575X