Vai al contenuto principale della pagina

Multilabel Classification : Problem Analysis, Metrics and Techniques / / by Francisco Herrera, Francisco Charte, Antonio J. Rivera, María J. del Jesus



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Herrera Francisco Visualizza persona
Titolo: Multilabel Classification : Problem Analysis, Metrics and Techniques / / by Francisco Herrera, Francisco Charte, Antonio J. Rivera, María J. del Jesus Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Edizione: 1st ed. 2016.
Descrizione fisica: 1 online resource (XVI, 194 p. 72 illus.)
Disciplina: 006.312
Soggetto topico: Data mining
Artificial intelligence
Data Mining and Knowledge Discovery
Artificial Intelligence
Persona (resp. second.): CharteFrancisco
RiveraAntonio J
del JesusMaría J
Nota di bibliografia: Includes bibliographical references at the end of each chapters.
Nota di contenuto: Introduction -- Multilabel Classification -- Case Studies and Metrics -- Transformation based Classifiers -- Adaptation based Classifiers -- Ensemble based Classifiers -- Dimensionality Reduction -- Imbalance in Multilabel Datasets -- Multilabel Software.
Sommario/riassunto: This book offers a comprehensive review of multilabel techniques widely used to classify and label texts, pictures, videos and music in the Internet. A deep review of the specialized literature on the field includes the available software needed to work with this kind of data. It provides the user with the software tools needed to deal with multilabel data, as well as step by step instruction on how to use them. The main topics covered are: • The special characteristics of multi-labeled data and the metrics available to measure them. • The importance of taking advantage of label correlations to improve the results. • The different approaches followed to face multi-label classification. • The preprocessing techniques applicable to multi-label datasets. • The available software tools to work with multi-label data. This book is beneficial for professionals and researchers in a variety of fields because of the wide range of potential applications for multilabel classification. Besides its multiple applications to classify different types of online information, it is also useful in many other areas, such as genomics and biology. No previous knowledge about the subject is required. The book introduces all the needed concepts to understand multilabel data characterization, treatment and evaluation.
Titolo autorizzato: Multilabel Classification  Visualizza cluster
ISBN: 3-319-41111-X
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910255019003321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui