Vai al contenuto principale della pagina

Monte Carlo Methods / / by Adrian Barbu, Song-Chun Zhu



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Barbu Adrian Visualizza persona
Titolo: Monte Carlo Methods / / by Adrian Barbu, Song-Chun Zhu Visualizza cluster
Pubblicazione: Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2020
Edizione: 1st ed. 2020.
Descrizione fisica: 1 online resource (XVI, 422 p. 250 illus., 185 illus. in color.)
Disciplina: 519.282
Soggetto topico: Mathematics - Data processing
Computer science - Mathematics
Mathematical statistics
Image processing - Digital techniques
Computer vision
Statistics
Computational Mathematics and Numerical Analysis
Probability and Statistics in Computer Science
Computer Imaging, Vision, Pattern Recognition and Graphics
Statistical Theory and Methods
Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences
Persona (resp. second.): ZhuSong-Chun
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: 1 Introduction to Monte Carlo Methods -- 2 Sequential Monte Carlo -- 3 Markov Chain Monte Carlo - the Basics -- 4 Metropolis Methods and Variants -- 5 Gibbs Sampler and its Variants -- 6 Cluster Sampling Methods -- 7 Convergence Analysis of MCMC -- 8 Data Driven Markov Chain Monte Carlo -- 9 Hamiltonian and Langevin Monte Carlo -- 10 Learning with Stochastic Gradient -- 11 Mapping the Energy Landscape.
Sommario/riassunto: This book seeks to bridge the gap between statistics and computer science. It provides an overview of Monte Carlo methods, including Sequential Monte Carlo, Markov Chain Monte Carlo, Metropolis-Hastings, Gibbs Sampler, Cluster Sampling, Data Driven MCMC, Stochastic Gradient descent, Langevin Monte Carlo, Hamiltonian Monte Carlo, and energy landscape mapping. Due to its comprehensive nature, the book is suitable for developing and teaching graduate courses on Monte Carlo methods. To facilitate learning, each chapter includes several representative application examples from various fields. The book pursues two main goals: (1) It introduces researchers to applying Monte Carlo methods to broader problems in areas such as Computer Vision, Computer Graphics, Machine Learning, Robotics, Artificial Intelligence, etc.; and (2) it makes it easier for scientists and engineers working in these areas to employ Monte Carlo methods to enhance their research.
Titolo autorizzato: Monte Carlo Methods  Visualizza cluster
ISBN: 981-13-2971-0
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910483831603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui