Vai al contenuto principale della pagina
| Autore: |
Cutkosky Steven D
|
| Titolo: |
Monomialization of Morphisms from 3-Folds to Surfaces / / by Steven D. Cutkosky
|
| Pubblicazione: | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2002 |
| Edizione: | 1st ed. 2002. |
| Descrizione fisica: | 1 online resource (VIII, 240 p.) |
| Disciplina: | 516.35 |
| Soggetto topico: | Geometry, Algebraic |
| Algebraic Geometry | |
| Classificazione: | 14D06 |
| 14E15 | |
| Note generali: | Bibliographic Level Mode of Issuance: Monograph |
| Nota di contenuto: | 1. Introduction -- 2. Local Monomialization -- 3. Monomialization of Morphisms in Low Dimensions -- 4. An Overview of the Proof of Monomialization of Morphisms from 3 Folds to Surfaces -- 5. Notations -- 6. The Invariant v -- 7. The Invariant v under Quadratic Transforms -- 8. Permissible Monoidal Transforms Centered at Curves -- 9. Power Series in 2 Variables -- 10. Ar(X) -- 11.Reduction of v in a Special Case -- 12. Reduction of v in a Second Special Case -- 13. Resolution 1 -- 14. Resolution 2 -- 15. Resolution 3 -- 16. Resolution 4 -- 17. Proof of the main Theorem -- 18. Monomialization -- 19. Toroidalization -- 20. Glossary of Notations and definitions -- References. |
| Sommario/riassunto: | A morphism of algebraic varieties (over a field characteristic 0) is monomial if it can locally be represented in e'tale neighborhoods by a pure monomial mappings. The book gives proof that a dominant morphism from a nonsingular 3-fold X to a surface S can be monomialized by performing sequences of blowups of nonsingular subvarieties of X and S. The construction is very explicit and uses techniques from resolution of singularities. A research monograph in algebraic geometry, it addresses researchers and graduate students. |
| Titolo autorizzato: | Monomialization of morphisms from 3-folds to surfaces ![]() |
| ISBN: | 3-540-48030-7 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910144941903321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |