Vai al contenuto principale della pagina

Modern applied biostatistical methods using S-Plus / / Steve Selvin



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Selvin S. Visualizza persona
Titolo: Modern applied biostatistical methods using S-Plus / / Steve Selvin Visualizza cluster
Pubblicazione: New York ; , : Oxford University Press, , 2023
Edizione: 1st ed.
Descrizione fisica: xiv, 461 p. : ill
Disciplina: 570/.1/5195
Soggetto topico: Biometry
Biology - Data processing
S (Computer program language)
Note generali: Includes index.
Previously issued in print: 1998.
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Intro -- Contents -- 1. S-language -- In the beginning -- Three data types-and some input conventions -- Reading values into SPLUS -- S-tools-a beginning set -- S-arithmetic -- More S-tools-intermediate set -- S-tools for statistics -- Statistical distributions in SPLUS -- Arrays and tables -- Matrix algebra tools -- Some additional S-tools -- Four S-code examples -- The .Data file -- Addendum: Built-in editors -- Problem set I -- 2. Descriptive Techniques -- Description of descriptive statistics -- Basic statistical measures -- Histogram smoothing-density estimation -- Stem-and-leaf display -- Comparison of groups-t-test -- Comparison of groups-boxplots -- Comparison of data to a theoretical distribution-quantile plots -- Comparison of groups-qqplots -- xy-plot -- Three-dimensional plots-perspective plots -- Three-dimensional plots-contour plots -- Three-dimensional plots-rotation -- Smoothing -- Two-dimensional smoothing of spatial data -- Clusters as a description of data -- Additivity-"sweeping" an array -- Example-geographic calculations using S-functions -- Estimation of the center of a two-dimensional distribution -- Addendum: S-geometry -- Problem set II -- 3. Simulation: Random Values -- Random uniform values -- An example -- Sampling without and with replacement -- Random sample from a discrete probability distribution-acceptance/rejection sampling -- Random sample from a discrete probability distribution-inverse transform method -- Binomial probability distribution -- Hypergeometric probability distribution -- Poisson probability distribution -- Geometric probability distribution -- Random samples from a continuous distribution -- Inverse transform method -- Simulating values from the normal distribution -- Four other statistical distributions -- Simulating minimum and maximum values -- Butler's method.
Random values over a complex region -- Multivariate normal variables -- Problem set III -- 4. General Linear Models -- Simplest case-univariate linear regression -- Multivariable case -- Multivariable linear model -- A closer look at residual values -- Predict-pointwise confidence intervals -- Formulas for glm( ) -- Polynomial regression -- Discriminant analysis -- Linear logistic model -- Categorical data-bivariate linear logistic model -- Multivariable data-linear logistic model -- Goodness-of-fit -- Poisson model -- Multivariable Poisson model -- Problem set IV -- 5. Estimation -- Estimation: Maximum Likelihood -- Estimator properties -- Maximum likelihood estimator -- Scoring to find maximum likelihood estimates -- Multiparameter estimation -- Generalized scoring -- Estimation: Bootstrap -- Background -- General outline -- Sample mean from a normal population -- Confidence limits -- An example-relative risk -- Median -- Simple linear regression -- Jackknife estimation -- Bias estimation -- Two-sample test-bootstrap approach -- Two-sample test-randomization approach -- Estimation: Least Squares -- Least squares properties -- Non-linear least squares estimation -- Problem set V -- 6. Analysis of Tabular Data -- Two by two tables -- Matched pairs-binary response -- Two by k table -- Measures of association-2 x 2 table -- Measures of association-r x c table -- Measures of association-table with ordinal variables -- Loglinear model -- Multidimensional-k-level variables -- High dimensional tables -- Problem set VI -- 7. Analysis of Variance and Some Other S-Functions -- Analysis of variance -- One-way design -- Nested design -- Two-way classification with one observation per cell -- Matched pairs-measured response -- Two-way classification with more than one observation per cell -- Leaps-a model selection technique -- Principal components.
Canonical correlations -- Problem set VII -- 8. Rates, Life Tables, and Survival -- Rates -- Life tables -- Survival analysis-an introduction -- Nonparametric estimation of a survival curve -- Hazard rate-estimation -- Mean/median survival time -- Proportional hazards model -- Problem set VIII -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- X -- Y -- Z.
Sommario/riassunto: Statistical analysis typically involves applying theoretically generated techniques to the description and interpretation of collected data. This text combines theory, application and interpretation to create an entire biostatistical process.
Titolo autorizzato: Modern applied biostatistical methods using S-Plus  Visualizza cluster
ISBN: 0-19-773778-1
1-280-75989-5
9786610759897
0-19-974773-3
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910974626203321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Monographs in epidemiology and biostatistics ; ; v.28. Oxford scholarship online.