Vai al contenuto principale della pagina
| Titolo: |
Minimum error entropy classification / / Joaquim P. Marques de Sa ... [et al.]
|
| Pubblicazione: | Berlin ; ; New York, : Springer, c2013 |
| Edizione: | 1st ed. 2013. |
| Descrizione fisica: | 1 online resource (XVIII, 262 p.) |
| Disciplina: | 006.3/1 |
| Soggetto topico: | Machine learning |
| Computational learning theory | |
| Altri autori: |
SaJ. P. Marques de <1946->
|
| Note generali: | Bibliographic Level Mode of Issuance: Monograph |
| Nota di bibliografia: | Includes bibliographical references and index. |
| Nota di contenuto: | Introduction -- Continuous Risk Functionals -- MEE with Continuous Errors -- MEE with Discrete Errors -- EE-Inspired Risks -- Applications. |
| Sommario/riassunto: | This book explains the minimum error entropy (MEE) concept applied to data classification machines. Theoretical results on the inner workings of the MEE concept, in its application to solving a variety of classification problems, are presented in the wider realm of risk functionals. Researchers and practitioners also find in the book a detailed presentation of practical data classifiers using MEE. These include multi‐layer perceptrons, recurrent neural networks, complexvalued neural networks, modular neural networks, and decision trees. A clustering algorithm using a MEE‐like concept is also presented. Examples, tests, evaluation experiments and comparison with similar machines using classic approaches, complement the descriptions. |
| Titolo autorizzato: | Minimum error entropy classification ![]() |
| ISBN: | 9783642290299 |
| 3642290299 | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910437918803321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |