Vai al contenuto principale della pagina
| Autore: |
Shao Qi
|
| Titolo: |
Metastable-Phase Materials : Synthesis, Characterization, and Catalytic Applications
|
| Pubblicazione: | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| ©2024 | |
| Edizione: | 1st ed. |
| Descrizione fisica: | 1 online resource (233 pages) |
| Soggetto topico: | Catalysis |
| Materials science | |
| Altri autori: |
KangZhenhui
ShaoMingwang
|
| Nota di contenuto: | Cover -- Title Page -- Copyright -- Contents -- Foreword -- Preface -- Chapter 1 Introduction of the Metastable‐Phase Materials -- 1.1 Introduction -- 1.2 What Are Metastable‐Phase Materials? -- 1.3 The Categories of Metastable‐Phase Materials -- 1.3.1 Different Packing Orders -- 1.3.2 Different Connecting Modes -- 1.3.3 Different Coordination Number -- 1.3.4 Different Kinds of Chemical Bonds -- 1.3.5 Order and Disorder Polymorphs -- 1.3.6 Molecular Thermal‐Motion‐Related Polymorphs -- 1.3.7 Spin‐Related Polymorphs -- 1.4 The Influence on Polymorphs of Materials -- 1.4.1 Temperature -- 1.4.2 Pressure -- 1.4.3 The Stability in Nano‐size Metastable‐Phase Catalysts -- 1.5 The Wide Applications of Metastable‐Phase Materials -- 1.6 The Criterion for Stable‐Phase and Metastable‐Phase Materials -- References -- Chapter 2 Synthetic Methodology -- 2.1 Introduction -- 2.2 The Key for Synthesizing Metastable‐Phase Materials -- 2.3 The Synthetic Methods for Synthesizing Metastable‐Phase Materials -- 2.3.1 Mechanical‐Energy‐Related Methods -- 2.3.2 Thermal‐Energy‐Related Methods -- 2.3.2.1 Hydrothermal Method -- 2.3.2.2 Solvothermal Method -- 2.3.2.3 Rapid Solidification or Quenching -- 2.3.2.4 Reflux Methods -- 2.3.2.5 Other Methods Related with Thermal Energy -- 2.3.3 High Pressure -- 2.3.4 Soft Chemical Method -- 2.3.5 Other Methods -- 2.3.6 The Combination of These Methods -- References -- Chapter 3 Characterization -- 3.1 Introduction -- 3.2 Characterizations -- 3.2.1 X‐ray Diffraction -- 3.2.2 Transmission Electron Microscopy -- 3.2.3 Synchrotron X‐ray Absorption -- 3.2.3.1 XANES -- 3.2.3.2 EXAFS -- 3.2.4 X‐ray Photoelectron Spectroscopy -- 3.2.5 Neutron Diffraction -- 3.2.6 X‐ray Magnetic Circular Dichroism (XMCD) -- 3.3 How to Determine the Phase of Metastable‐Phase 2D Metal Oxides -- References -- Chapter 4 Metastable‐Phase Metals -- 4.1 Introduction. |
| 4.2 Noble Metals -- 4.2.1 Au and Ag -- 4.2.2 Pd and Rh -- 4.2.3 Pt and Ir -- 4.2.4 Ru and Os -- 4.3 Non‐noble Metals -- 4.3.1 Ni -- 4.3.2 Co -- 4.3.3 Fe -- 4.3.4 Mn -- 4.3.5 Sn -- 4.3.6 W -- 4.4 The Criterion to Determine the Stable‐Phase and Metastable‐Phase Metals -- References -- Chapter 5 Metastable‐Phase Oxide, Chalcogenide, Phosphide, and Boride Materials -- 5.1 Introduction -- 5.2 Oxides -- 5.2.1 TiO2 -- 5.2.2 Fe2O3 -- 5.2.3 ZnO -- 5.3 Chalcogenides -- 5.3.1 MoS2 -- 5.3.2 CdS and ZnS -- 5.3.3 Cu2SnSe3 -- 5.4 Others -- 5.4.1 C -- 5.4.2 ZrP and HfP -- 5.4.3 Ni7B3 and OsB2 -- References -- Chapter 6 Spin‐Dependent Metastable‐Phase Materials -- 6.1 Introduction -- 6.2 Spin‐Related Catalysis -- 6.2.1 Background -- 6.2.2 OER -- 6.2.3 ORR -- 6.3 Spin‐Related Catalysts for Alkaline OER -- 6.3.1 Spinel Oxides -- 6.3.2 Oxyhydroxide -- 6.4 Spin‐Related Catalyst for Acidic OER -- References -- Chapter 7 Crystallography, Design, and Synthesis of Two‐Dimensional Metastable‐Phase Oxides -- 7.1 Introduction -- 7.2 The Point Group, Crystal System, Crystal Lattice, and Space Groups of 2D Materials -- 7.2.1 Background -- 7.2.2 Theoretical Deduction -- 7.2.2.1 The Determination of 2D Point Group -- 7.2.2.2 The Determination of 2D Crystal Systems -- 7.2.2.3 The Determination of Crystal Lattices -- 7.2.2.4 The Determination of 2D Space Group -- 7.3 The Possible Crystal Structures and Chemical Formula of 2D Metal Oxides -- 7.3.1 The Importance of 2D Metal Oxides -- 7.3.2 The Possible Crystal Structure of 2D Metal Oxides -- 7.3.2.1 CN of 3 -- 7.3.2.2 CN of 4 -- 7.3.2.3 CN of 5 -- 7.3.2.4 CN of 6 -- 7.3.2.5 CN of 7 -- 7.3.2.6 CN of 8 -- 7.3.2.7 CN of 9 -- 7.3.2.8 CN of 10 -- 7.3.2.9 CN of 11 -- 7.3.2.10 CN of 12 -- 7.3.3 The Possible Metallene Oxides -- 7.4 How to Prepare Metastable‐Phase 2D Metal Oxides -- 7.5 2D Metastable‐Phase Noble Metal Oxides. | |
| 7.5.1 Introduction of 2D Metastable‐Phase Noble Metal Oxides -- 7.5.2 2D Metastable‐Phase Iridium Oxides -- 7.5.3 2D Metastable‐Phase Platinum Oxides -- 7.5.4 2D Metastable‐Phase Rhodium Oxides -- 7.5.5 2D Metastable‐Phase Palladium Oxides -- 7.6 Metastable‐Phase 2D Non‐noble Metal Oxides -- 7.6.1 2D Metastable‐Phase Cerium Oxide -- 7.6.2 2D Metastable‐Phase Hafnium Oxide -- 7.6.3 2D Metastable‐Phase Tin Oxide -- 7.7 The Covalent Bond Behavior in Metastable‐Phase 1T Metal Oxides -- 7.7.1 The Relationship Between Bonds and Valences for Chemical Bonds -- 7.7.2 Distortion Theorem and Jahn-Teller Effect -- 7.7.3 The Behavior Against Distortion Theorem of 1T Oxides and Anti‐Jahn-Teller Effect of 1T PdO2 -- 7.7.4 The Origin of Flexibility for 1T Metal Oxides -- References -- Chapter 8 Electrocatalysis -- 8.1 Introduction -- 8.2 Several Typical Electrochemical Reactions -- 8.2.1 Hydrogen Evolution Reaction -- 8.2.2 Oxygen Evolution Reaction -- 8.2.3 Oxygen Reduction Reaction -- 8.2.4 Carbon Dioxide Reduction Reaction -- 8.3 Metastable‐Phase Catalysts for Advanced Electrocatalysis -- 8.3.1 Metastable‐Phase Metals -- 8.3.2 Metastable‐Phase Oxides -- 8.3.3 Metastable‐Phase Transition Metal Chalcogenides -- 8.3.4 Metastable‐Phase Phosphides -- 8.3.5 Metastable‐Phase Carbides -- References -- Chapter 9 Photocatalysis -- 9.1 Introduction -- 9.2 Fundamental Concepts of Photocatalysis -- 9.2.1 Mechanism of Photocatalysis -- 9.2.2 Experimental Parameters of Photocatalysis -- 9.2.3 How to Determine the Bandgap -- 9.2.4 The Change of Bandgap, CB, and VB of Nanomaterials -- 9.3 Metastable‐Phase Catalysts and Photocatalysis -- 9.3.1 TiO2 -- 9.3.2 TaON -- 9.3.3 MoO3 -- 9.3.4 WO3 -- 9.3.5 Bi2O3 -- 9.3.6 MoS2 -- 9.3.7 MnS -- 9.3.8 FeVO4 -- 9.3.9 Sr0.5TaO3 -- 9.3.10 Bi20TiO32 -- 9.3.11 Bi2Zr2O7 -- 9.3.12 Bi2SiO5 -- 9.3.13 Ag2MoO4 -- 9.3.14 Ag2WO4 -- 9.3.15 ZnMoO4. | |
| 9.3.16 K2LaTa2O6N -- 9.3.17 ZrSnO4 -- 9.3.18 (1−x)BiFeO3−xPbTiO3 -- 9.4 The Advantages and Disadvantages of Photocatalysis -- References -- Chapter 10 Thermocatalysts -- 10.1 Introduction -- 10.2 Several Typical Thermocatalytic Reactions -- 10.2.1 Synthesis of Ammonia -- 10.2.2 Water-Gas Shift Reaction -- 10.2.3 Catalytic Reforming -- 10.2.4 Hydrogenation -- 10.2.5 CO Oxidation -- 10.2.6 Fischer-Tropsch Reaction -- 10.3 Metastable‐Phase Catalysts for Thermocatalysis -- 10.3.1 MoO3 and MoO2 -- 10.3.2 ZrO2 -- 10.3.3 Al2O3 -- 10.3.4 CuO and Cu4O3 -- 10.3.5 FeO and Fe2O3 -- 10.3.6 Other Oxides -- 10.3.7 Metals and Alloys -- 10.3.8 Chalcogenides -- 10.3.9 Carbides -- 10.3.10 Borides -- References -- Summary and Outlook -- Index -- EULA. | |
| Sommario/riassunto: | This book, edited by Qi Shao, Zhenhui Kang, and Mingwang Shao, focuses on the synthesis and catalytic applications of various materials. It explores the synthesis methods, structural properties, and catalytic performance of materials like oxides, metals, and chalcogenides. The authors discuss the theoretical and practical significance of these materials in energy, industry, and environmental applications. The book provides detailed insights into the crystalline structures and metastable phases of materials, emphasizing their thermodynamic instability and potential applications. Aimed at researchers and students in chemistry and materials science, it combines recent research developments with practical methodology, presenting a comprehensive overview of the field. |
| Titolo autorizzato: | Metastable-Phase Materials ![]() |
| ISBN: | 9783527839834 |
| 3527839836 | |
| 9783527839810 | |
| 352783981X | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9911019793903321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |