Vai al contenuto principale della pagina

Metal Oxides for Next-Generation Optoelectronic, Photonic, and Photovoltaic Applications



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Kumar Vijay Visualizza persona
Titolo: Metal Oxides for Next-Generation Optoelectronic, Photonic, and Photovoltaic Applications Visualizza cluster
Pubblicazione: San Diego : , : Elsevier, , 2023
©2024
Edizione: 1st ed.
Descrizione fisica: 1 online resource (676 pages)
Disciplina: 621.381045
Soggetto topico: Metallic oxides
Photovoltaic power generation
Altri autori: SharmaVishal (Associate professor)  
SwartHendrik C  
DasSubrata  
Nota di contenuto: Intro -- Metal Oxides for Next-Generation Optoelectronic, Photonic, and Photovoltaic Applications -- Copyright -- Contents -- Contributors -- Series editor biography -- Preface to the series -- Section A: Metal oxide-based transparent electronics -- Chapter 1: Optical transparency combined with electrical conductivity: Challenges and prospects -- Chapter outline -- 1. Introduction -- 2. Optical properties of metal oxides -- 2.1. SnO2 -- 2.2. CuO -- 2.3. ZnO -- 3. Electrical properties of metal oxides -- 3.1. SnO2 -- 3.2. CuO -- 3.3. ZnO -- 4. Application -- 4.1. Sensors -- 4.1.1. Carbon dioxide gas sensors -- 4.1.2. Carbon monoxide gas sensors -- 4.1.3. Oxygen gas sensors -- 4.1.4. Nitric oxide gas sensor -- 4.1.5. Ammonia gas sensors -- 4.1.6. Ozone gas sensors -- 4.2. Batteries -- 4.3. Solar cell -- 4.3.1. CuO solar cells -- 4.3.2. Binary heterojunction solar cells -- 4.3.3. Thin film solar cells -- 4.4. Antennas -- 4.5. Optoelectronic and electronics -- 5. Future challenges and aspects -- 6. Conclusion -- References -- Chapter 2: Transparent ceramics: The material of next generation -- Chapter outline -- 1. Introduction -- 2. What makes the ceramics transparent? -- 3. Classification of transparent ceramics -- 3.1. Metal-oxide ceramics -- 3.1.1. Alumina (Al2O3) -- 3.1.2. Magnesia (MgO) -- 3.1.3. Zirconia (ZrO2) -- 3.1.4. Sesquioxides -- 3.1.5. Yttrium-aluminum garnet (Y3Al5O12) -- 3.1.6. Spinel (MgAl2O4) -- 3.1.7. Transparent ferroelectric ceramics -- 3.1.8. Other oxide ceramics -- 3.2. Nonoxide ceramics -- 3.2.1. Aluminum oxynitride (AlON) and aluminum nitride (AlN) -- 3.2.2. SiAlON and silicon nitride (Si3N4) -- 3.2.3. Fluorides -- 4. Applications of transparent ceramics -- 5. Conclusion -- References -- Chapter 3: Transparent metal oxides in OLED devices -- Chapter outline -- 1. Introduction -- 2. Structure and working principle of OLED.
3. Generations and types of OLEDs -- 4. Deposition techniques -- 4.1. Magnetron sputtering -- 4.2. Pulsed laser deposition -- 4.3. Spray pyrolysis method -- 4.4. Chemical vapor deposition -- 4.5. Sol-gel and dip-coating method -- 5. Optoelectronic properties of TCEs -- 6. Important TCOs -- 6.1. Indium tin oxide (ITO) -- 6.2. Fluorinated tin oxide (FTO) -- 6.3. Zinc oxide (ZnO) -- 6.4. Cadmium oxide (CdO) -- 6.5. Tin oxide (SnO2) -- 6.6. TCO/metal/TCO multilayered structures -- 6.7. Multicomponent-based TCOs -- 7. Surface treatment of TCOs -- 8. TCOs on flexible substrates -- 9. Color tuning with graded ITO thickness -- 10. Conclusions -- Acknowledgments -- References -- Section B: Metal oxide-based phosphors and their applications -- Chapter 4: Metal oxide-based nanophosphors for next generation optoelectronic and display applications -- Chapter outline -- 1. Introduction -- 2. Phosphor and luminescence mechanism -- 3. Silicate phosphor for LED applications -- 4. Basics of silicate -- 5. Method of synthesis of silicate phosphors -- 6. Comparative study of rare-earth/transition metal ion-doped silicate phosphor, synthesis method, characterization, and ... -- 6.1. Rare-earth/transition metal doped calcium silicate (CaSiO3) -- 6.2. Rare-earth/transition metal doped diopside (CaMgSi2O6) -- 6.3. Rare-earth/transition metal doped akermanite (Ca2MgSi2O7) -- 7. Conclusion -- References -- Chapter 5: Metal oxide-based phosphors for white light-emitting diodes -- Chapter outline -- 1. Introduction -- 2. Phosphors and quantum dots -- 3. Structure of quantum light-emitting diodes (QLEDs) -- 4. Spectroscopy of phosphors materials -- 5. Transition metal ions and their role in LED phosphors -- 6. WLEDs requirements -- 7. Tuning and role of dopant -- 8. Metal oxide-based phosphors for WLEDs -- 8.1. Direct white light generation.
8.2. Homojunction and heterojunction WLEDs -- 8.3. Discrete color mixing WLEDs -- 9. Conclusion -- Acknowledgments -- References -- Chapter 6: Thermographic phosphors for remote temperature sensing -- Chapter outline -- 1. Introduction -- 2. Optical temperature sensing -- 2.1. Basic principle of fluorescence intensity ratio-based temperature sensing -- 2.2. Optical thermometry based on Er3+ emission -- 2.3. Optical thermometry based on Ho3+ emission -- 2.4. Optical thermometry based on Tm3+ emission -- 2.5. Optical thermometry based on Nd3+ emission -- 3. Lifetime-based thermometry -- 4. Upconverting nanothermometers in biomedical applications -- 5. Conclusion and prospects -- References -- Chapter 7: Metal oxide-based phosphors for chemical sensors -- Chapter outline -- 1. Introduction -- 2. Metal oxide materials -- 3. Complex metal oxides -- 4. Nano-structured metal oxides -- 5. Synthesis of metal oxide structures -- 6. Phosphors (or luminescent materials) -- 6.1. Oxide type phosphors -- 6.2. Photoluminescence mechanism based on centers, activators, and coactivators -- 6.3. Chemical sensors based on metal oxide-based phosphors -- 6.3.1. Metal oxide-based phosphors for three-band fluorescent lamps -- 6.3.2. Metal oxide-based phosphors for plasma display panels (PDPs) -- 6.3.3. Metal oxide-based phosphors for white light-emitting diodes (wLEDs) -- 6.4. Characteristics of phosphors for LEDs applications -- 6.4.1. Correlated color temperature (CCT) -- 6.4.2. Colorimetry -- 6.4.3. Color rendering index (CRI) -- 6.4.4. Quantum efficiency -- 6.4.5. Factors affecting of LEDs efficiency -- 7. Types of metal oxide-based phosphors -- 7.1. Aluminate-based phosphors -- 7.2. Silicate-based phosphors -- 7.3. Borate-based phosphors -- 7.4. Phosphate-based phosphors -- 7.5. Zincate-based phosphors -- 7.6. Gallate-based phosphors -- 8. Conclusion and future remarks.
References -- Chapter 8: Advancing biosensing with photon upconverting nanoparticles -- Chapter outline -- 1. Introduction -- 2. Background of UCNPs and their synthesis -- 2.1. Thermal decomposition technique -- 2.2. Hydrothermal synthesis -- 2.3. Ionic liquid-based synthesis -- 3. Application of UCNP-based biosensors -- 3.1. Applications of UCNPs as biosensors based on FRET/LRET process -- 3.2. Application of UCNPs as biosensor based on IFE process -- 3.3. Other biosensing applications -- 4. Conclusions -- References -- Section C: Metal oxides for photonic and optoelectronic applications -- Chapter 9: Metal oxide-based LEDs and lasers -- Chapter outline -- 1. Introduction -- 2. General overview of metal oxides -- 3. Synthesis of metal oxides -- 4. Properties of metal oxides -- 5. Application of metal oxides in LEDs and lasers -- 5.1. Application of metal oxides in LEDs -- 5.1.1. Metal oxides in quantum dot LEDs (QD-LEDs) -- 5.1.2. Metal oxides in polymer LEDs (PLEDs) -- 5.2. Application of metal oxides in lasers -- 5.2.1. Metal oxide-based lasers -- 6. Concluding remarks -- Acknowledgment -- References -- Chapter 10: All metal oxide-based photodetectors -- Chapter outline -- 1. Introduction -- 2. Synthesis of miscellaneous forms of MOx for photodetection -- 2.1. Synthesis of MOx QDs -- 2.2. Synthesis of 1D MOx -- 2.2.1. Vapor phase (VP) growth -- 2.2.2. Solution-phase (SP) growth -- 2.2.3. Electrochemical synthesis (ECS) -- 2.2.4. Laser ablation on solid liquid interface -- 2.2.5. Chemical vapor deposition (CVD) -- 2.2.6. Physical vapor deposition (PVD) -- 3. Designing and performance of MOx photosensing devices -- 3.1. Solar blind photodetectors -- 3.2. UV photodetectors -- 3.3. Visible MOx photodetectors -- 4. Effect of harsh conditions on performance of MOx photodetectors -- 5. Applications of MOx photodetectors -- 5.1. Safety and security.
5.2. Process control -- 5.3. The cutting edge -- 5.4. Environmental sensing -- 5.5. Astronomy -- 6. Conclusions -- References -- Chapter 11: Metal oxide charge transport layers for halide perovskite light-emitting diodes -- Chapter outline -- 1. Overview of next-generation halide perovskite light-emitting diodes -- 2. Multi-dimensional hybrid organic-inorganic and all-inorganic halide-based diodes -- 3. Lead-free halide perovskite light-emitting diodes -- 4. Device architectures -- 5. Charge transport layers in perovskite light-emitting diodes -- 6. Characteristics of effective metal oxide charge transport layers -- 6.1. Properties of metal oxide charge transport layers -- 6.2. Interfacial energetics -- 7. Classification of metal oxides in charge transport layers -- 7.1. Binary and ternary metal oxides -- 7.1.1. Metal oxide electron transport layers -- 7.1.2. Metal oxide hole transport layers -- 7.1.3. Bipolar metal oxides -- 8. Recent progress on device engineering using metal oxide layers -- 9. Metal oxide charge transport layer deposition techniques -- 9.1. Solution-processing methods -- 9.2. Vacuum deposition methods -- 9.3. Other deposition methods -- 10. Approaches for optimizing metal oxide charge transport layers -- 10.1. Doping strategy and the use of nanostructures in metal oxide charge transport layers -- 10.2. Surface and interface modification -- 11. Characterization techniques used for metal oxide charge transport layers -- 12. Charge transport dynamics at the metal oxide-perovskite interfaces -- 13. Conclusion, challenges ahead, and perspectives for future work -- References -- Chapter 12: Antireflective coatings and optical filters -- Chapter outline -- 1. Introduction -- 2. Metal oxides as an optical material -- 3. Antireflective coatings -- 3.1. Defining a perfect antireflective coating -- 3.2. Theory of antireflective coatings.
3.3. Types of antireflective coatings and surfaces.
Sommario/riassunto: This comprehensive volume explores the diverse applications and properties of metal oxides in photonic and photovoltaic technologies. Edited by Ghenadii Korotcenkov, the book delves into the use of metal oxides in various advanced technologies, including thin-film structures, solar cells, biomedical applications, heterogeneous catalysis, and sensors for toxic chemicals. It also covers the synthesis, properties, and applications of specific metal oxides like titanium dioxide and cerium oxide. Aimed at researchers and practitioners in the fields of materials science and engineering, this book provides insights into the challenges and future prospects of metal oxide applications in technology and industry. The volume highlights the role of metal oxides in energy technologies, optics-based medical applications, and the development of non-volatile memory and polymer-metal oxide composites.
Titolo autorizzato: Metal Oxides for Next-Generation Optoelectronic, Photonic, and Photovoltaic Applications  Visualizza cluster
ISBN: 9780323993678
0323993672
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9911007014803321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Metal Oxides Series