Vai al contenuto principale della pagina

Metal Additive Manufacturing : Principles, Techniques and Applications



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Rajasekar R Visualizza persona
Titolo: Metal Additive Manufacturing : Principles, Techniques and Applications Visualizza cluster
Pubblicazione: Newark : , : John Wiley & Sons, Incorporated, , 2025
©2025
Edizione: 1st ed.
Descrizione fisica: 1 online resource (554 pages)
Disciplina: 621.988
Soggetto topico: Additive manufacturing
Materials science
Altri autori: MostafaeiAmir  
PriyaC. Mogana  
KumarP. Sathish  
Nota di contenuto: Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Technologies for Additive Manufacturing of Metals and Their Classification -- 1.1 Introduction -- 1.2 Metal Additive Manufacturing Process (MAMP) -- 1.3 Classification of MAMP Based on Technologies -- 1.4 Liquid-Based MAMP: Liquid Metal 3D Printing -- 1.5 Solid-Based MAMP: Ultrasonic Additive Manufacturing -- 1.6 Powder-Based MAMP -- 1.6.1 Binder Jetting -- 1.6.2 Powder Direct Energy Deposition (DED) -- 1.6.2.1 Laser Cladding Technology -- 1.6.2.2 Underwater LC Technology -- 1.6.3 Powder Bed Fusion (PBF) -- 1.6.3.1 Electron Beam PBF: Electron Beam Melting (EBM) -- 1.6.3.2 Laser PBF: Selective Laser Sintering -- 1.7 Wire-Based MAMP: Wire DED -- 1.7.1 Wire Arc Additive Manufacturing -- 1.7.1.1 GMAW -- 1.7.1.2 GTAW -- 1.7.1.3 CMT -- 1.7.1.4 Plasma Welding -- 1.8 Applications -- 1.9 Conclusion -- References -- Chapter 2 Challenges and Complications in Metal Additive Manufacturing During Post Processing -- 2.1 Introduction -- 2.1.1 Types of Additive Manufacturing -- 2.1.1.1 Powder Based Additive Manufacturing -- 2.1.1.2 WAAM by Gas Tungsten Arc (GTAW) Welding -- 2.1.1.3 AM by Gas Metal Arc Welding (GMAW) -- 2.1.1.4 Defects in Components Made by AM -- 2.2 Various Post Processing Methods -- 2.2.1 Cold Rolling -- 2.2.2 Heat Treatment -- 2.2.3 Friction Stir Processing (FSP) -- 2.2.4 Laser Peening -- 2.2.5 Short Peening and Ultrasonic Impact Testing (UIT) -- 2.3 Future Scope and Aspects -- 2.4 Conclusion -- References -- Chapter 3 Mechanics and Modeling of Metal Additive Manufacturing Using Directed Energy Deposition Method -- 3.1 Introduction -- 3.1.1 Mechanics of DED -- 3.1.1.1 Heat Transfer Mechanisms -- 3.1.1.2 Thermal Stresses and Distortion -- 3.1.1.3 Microstructure Evolution -- 3.1.1.4 Residual Stresses and Mechanical Properties.
3.1.2 Modeling Approaches in DED -- 3.1.2.1 Analytical Model -- 3.1.3 Heat Transfer Analysis -- 3.1.4 Thermal Stress Analysis -- 3.1.5 Solidification and Cooling Rates -- 3.1.6 Melt Pool Geometry -- 3.1.7 Energy Efficiency -- 3.2 Computational Modeling -- 3.2.1 Computational Fluid Dynamics -- 3.2.2 Finite Element Modeling -- 3.2.2.1 Thermal Analysis -- 3.2.2.2 Mechanical Analysis -- 3.2.2.3 Metallurgical Analysis -- 3.2.3 Multi-Physics Modeling -- 3.3 Nucleation Modeling -- 3.3.1 Phase Field -- 3.3.2 Cellular Automata (CA) -- 3.3.3 Monte Carlo (MC) Model -- 3.4 Conclusion -- References -- Chapter 4 Rapid Additive Manufacturing of Metals Using the Cold Spray Technology: Progress and Challenges -- 4.1 Introduction -- 4.2 Progress in Cold Spraying Towards an Implementation as a Fast AM Route for Metals -- 4.3 Processing Science of Cold Spraying from Coating to Additive Manufacturing -- 4.4 Cold Spraying Modern System for an Additive Manufacturing Application -- 4.5 Robotic Technology and Computerized Program Execution in Cold Spraying -- 4.6 Robotic Programming and Deposition Strategy for CSAM -- 4.7 Current Achievements in CSAM of Metallic Parts -- 4.8 Porosity Issue Due to the Additive Growth and Methods for Pore Reduction -- 4.9 Issue of Clogging in CSAM and Concept of Aerospike Nozzle as Potential Solution -- 4.10 Future Research Directions -- 4.11 Conclusion -- References -- Chapter 5 Principles of Material Extrusion in Metal Additive Manufacturing -- 5.1 Introduction -- 5.2 Additive Manufacturing Technology -- 5.3 Basic Additive Manufacturing Methods -- 5.3.1 Fused Deposition Modeling (FDM) -- 5.3.2 Stereolithography (SLA) -- 5.3.3 Selective Laser Sintering (SLS) -- 5.3.4 Electron Beam Melting (EBM) -- 5.3.5 Digital Light Processing (DLP) -- 5.3.6 Metal Material Extrusion with Additive Manufacturing -- 5.4 Extrusion Principle.
5.4.1 Extrusion Process of Metal Materials -- 5.4.2 Industrial Applications of Extrusion -- 5.4.3 Advantages and Challenges of Extrusion -- 5.5 Metal Extrusion with Additive Manufacturing -- 5.5.1 Application of Additive Manufacturing Technology -- 5.5.2 Design and Simulation Processes -- 5.5.3 Material Selection and Properties -- 5.6 Industrial Applications and Examples -- 5.6.1 Automotive Industry Applications -- 5.6.2 Aerospace Industry Applications -- 5.6.3 Medical Industry Applications -- 5.6.4 Energy Sector Applications -- 5.7 Future Potential and Innovative Approaches -- 5.7.1 Expansion of Metal Material Range -- 5.7.2 Development of Multi-Functional Parts -- 5.7.3 Production of Large-Scale Parts -- 5.7.4 Development of High-Performance Materials -- 5.7.5 Sustainability and Use of Recycled Materials -- 5.7.6 Artificial Intelligence and Automation Integration -- 5.8 Conclusion -- References -- Chapter 6 Material Design: A 'Material' Way to Improve Additive Manufacturing -- 6.1 Introduction -- 6.1.1 Metal Additive Manufacturing (MAM) -- 6.2 Conventional Alloys for MAM -- 6.3 Limitations of Conventional Alloys for MAM -- 6.4 Material Design for Metal Additive Manufacturing -- 6.4.1 Design Strategies -- 6.4.2 Crack Annihilation -- 6.4.3 Grain Size Strengthening -- 6.4.4 Multiple Alloy Powder Mixing -- 6.4.5 Oxide-Dispersion-Strengthening (ODS) -- 6.4.6 New Alloy -- 6.5 Alloys Designed for AM -- 6.5.1 Al Alloys -- 6.5.2 Nickel-Based Superalloy -- 6.5.3 Multi-Principle Element Alloys (MPEAs) -- 6.5.4 Other Alloys -- 6.6 Perspective and Future Directions -- 6.7 Summary -- References -- Chapter 7 Metal Powder Feedstock Production for Additive Manufacturing -- 7.1 Introduction -- 7.2 Different Stages in Metal Powder Production -- 7.3 Feedstock Selection -- 7.3.1 Quality Assurance Methodologies -- 7.3.1.1 Particle Size Analysis.
7.3.1.2 Chemical Composition Testing -- 7.3.1.3 Morphological Characterization Techniques -- 7.3.2 Certification Standards in Metal Powder Production -- 7.3.2.1 ISO Standards -- 7.3.2.2 ASTM International Standards -- 7.3.2.3 Industry-Specific Standards -- 7.4 Processes -- 7.4.1 Gas Atomization -- 7.4.1.1 Free-Fall Atomization -- 7.4.1.2 Close-Coupled Gas Atomization -- 7.4.1.3 High-Pressure Gas Atomization Process -- 7.4.1.4 EIGA and PIGA Process -- 7.4.2 Water Atomization -- 7.4.3 Plasma Atomization -- 7.4.4 Centrifugal Atomization -- 7.4.5 Melt Spinning -- 7.4.6 Rotating Electrode Process -- 7.4.6.1 Plasma Rotating Electrode Process -- 7.4.7 Mechanical Processes -- 7.4.7.1 Comminution -- 7.4.7.2 Mechanical Alloying -- 7.4.8 Chemical Processes -- 7.4.8.1 Oxide Reduction -- 7.4.8.2 Chloride Reduction -- 7.4.8.3 Hydrometallurgical Techniques -- 7.4.8.4 Carbonyl Reactions -- 7.4.9 Other Processes -- 7.4.9.1 Laser Ablation -- 7.4.9.2 Ultrasonic Spray Pyrolysis -- 7.4.9.3 Microwave Plasma Synthesis -- 7.4.9.4 Combustion Synthesis -- 7.4.9.5 Spark Erosion -- 7.4.10 Sustainable Initiatives -- 7.4.10.1 Eco-Friendly Atomization Methods -- 7.4.10.2 Recycling Strategies -- 7.4.10.3 Life Cycle Assessment -- 7.5 Powder Processing -- 7.6 Discussion -- 7.6.1 Successful Applications of Metal Powders in Industries -- 7.6.1.1 Aerospace Industry -- 7.6.1.2 Healthcare Sector -- 7.6.1.3 Automotive Industry -- 7.6.1.4 Electronic Industry -- 7.6.1.5 Energy Sector -- 7.6.1.6 Tool and Die Manufacturing -- 7.6.1.7 Chemical Industry -- 7.6.1.8 Sports and Recreation Equipment -- 7.6.1.9 Nuclear Industry -- 7.6.1.10 Additive Manufacturing for Jewelry -- 7.6.1.11 Art and Sculpture Production -- 7.6.1.12 Precision Optics Coating -- 7.6.1.13 Renewable Energy Storage -- 7.7 Conclusion -- Acknowledgments -- References.
Chapter 8 Additive Manufacturing of Intermetallic- Based Alloys: A Review -- 8.1 Introduction -- 8.2 Basic Properties of Intermetallic Alloy -- 8.2.1 NiAl-Based Alloys -- 8.2.2 Ni3Al-Based Alloys -- 8.2.3 TiAl-Based Alloys -- 8.2.3.1 .-TiAl Phase -- 8.2.3.2 a2-Ti3Al Phase -- 8.2.3.3 B2 Phase -- 8.2.3.4 .-Titanium Aluminide Microstructure -- 8.3 Additive Manufacturing Techniques -- 8.4 NiAl-Based Alloys -- 8.5 Metallurgical Defects -- 8.6 Microstructure -- 8.7 Mechanical Properties -- 8.8 Ni3Al-Based Alloys -- 8.9 Metallurgical Defects -- 8.10 Microstructure -- 8.11 Mechanical Properties -- 8.12 TiAl-Based Alloy -- 8.12.1 Metallurgical Defects -- 8.13 Microstructure -- 8.14 Mechanical Properties -- 8.15 Conclusion and Perspectives -- 8.15.1 Conclusion -- 8.15.2 Perspectives -- Acknowledgments -- References -- Chapter 9 Mechanical Behavior of 3D Printed Parts -- 9.1 Introduction -- 9.1.1 Basic Steps of AM Process -- 9.2 Metal AM and its Classification -- 9.3 Metal AM Processes and the Mechanical Properties of Printed Parts -- 9.3.1 Powder Bed Fusion Process -- 9.3.1.1 Laser Powder Bed Fusion (LPBF) -- 9.3.1.2 Electron Beam Powder Bed Fusion (EB-PBF) -- 9.3.2 Binder Jetting Process (BJ) -- 9.3.2.1 Mechanical Properties of 3D Printed Metal Parts by BJ Process -- 9.3.3 Directed Energy Deposition (DED) -- 9.3.3.1 Laser-Based Direct Energy Deposition (LDED) -- 9.3.3.2 Electron Beam Directed Energy Deposition (EB-DED) -- 9.3.3.3 Wire Arc Directed Energy Deposition (Wire Arc DED) -- 9.3.4 Sheet Lamination or Laminated Object Manufacturing (LOM) -- 9.3.4.1 Mechanical Properties of 3D Printed Metal Parts by Sheet Lamination -- 9.4 Effect of Post-Processing on the Mechanical Properties of 3D Printed Metal Parts -- 9.5 Challenges and Opportunities for Metal AM -- 9.6 Conclusion -- References.
Chapter 10 Processing of Hydrogels with Metallic Additives in Additive Manufacturing.
Sommario/riassunto: This book provides a comprehensive exploration of metal additive manufacturing (MAM), detailing its principles, processes, techniques, and applications. Edited by experts from academia and industry, it delves into various MAM methods, including powder-based, liquid-based, wire-based, and extrusion-based techniques. The content also addresses challenges in post-processing, computational modeling, material design, and feedstock production. Additionally, the book examines the industrial applications of MAM in sectors like aerospace, automotive, and medical industries while exploring future innovations and technologies such as artificial intelligence integration. It serves as a valuable resource for engineers, researchers, professionals, and students interested in advancing their understanding of metal additive manufacturing technologies.
Titolo autorizzato: Metal Additive Manufacturing  Visualizza cluster
ISBN: 1-394-28765-8
1-394-28763-1
1-394-28764-X
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9911020432903321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui