Vai al contenuto principale della pagina

Merging optimization and control in power systems : physical and cyber restrictions in distributed frequency control and beyond / / Feng Liu [and three others]



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Liu Feng (Electrical engineering teacher) Visualizza persona
Titolo: Merging optimization and control in power systems : physical and cyber restrictions in distributed frequency control and beyond / / Feng Liu [and three others] Visualizza cluster
Pubblicazione: Hoboken, New Jersey : , : Wiley, , [2022]
©2022
Descrizione fisica: 1 online resource (435 pages)
Disciplina: 621.319
Soggetto topico: Electric power systems - Control
Note generali: Includes index.
Nota di contenuto: Cover -- Title Page -- Copyright -- Contents -- Foreword -- Preface -- Acknowledgments -- Chapter 1 Introduction -- 1.1 Traditional Hierarchical Control Structure -- 1.1.1 Hierarchical Frequency Control -- 1.1.1.1 Primary Frequency Control -- 1.1.1.2 Secondary Frequency Control -- 1.1.1.3 Tertiary Frequency Control -- 1.1.2 Hierarchical Voltage Control -- 1.1.2.1 Primary Voltage Control -- 1.1.2.2 Secondary Voltage Control -- 1.1.2.3 Tertiary Voltage Control -- 1.2 Transitions and Challenges -- 1.3 Removing Central Coordinators: Distributed Coordination -- 1.3.1 Distributed Control -- 1.3.2 Distributed Optimization -- 1.4 Merging Optimization and Control -- 1.4.1 Optimization‐Guided Control -- 1.4.2 Feedback‐Based Optimization -- 1.5 Overview of the Book -- Bibliography -- Chapter 2 Preliminaries -- 2.1 Norm -- 2.1.1 Vector Norm -- 2.1.2 Matrix Norm -- 2.2 Graph Theory -- 2.2.1 Basic Concepts -- 2.2.2 Laplacian Matrix -- 2.3 Convex Optimization -- 2.3.1 Convex Set -- 2.3.1.1 Basic Concepts -- 2.3.1.2 Cone -- 2.3.2 Convex Function -- 2.3.2.1 Basic Concepts -- 2.3.2.2 Jensen's Inequality -- 2.3.3 Convex Programming -- 2.3.4 Duality -- 2.3.5 Saddle Point -- 2.3.6 KKT Conditions -- 2.4 Projection Operator -- 2.4.1 Basic Concepts -- 2.4.2 Projection Operator -- 2.5 Stability Theory -- 2.5.1 Lyapunov Stability -- 2.5.2 Invariance Principle -- 2.5.3 Input-Output Stability -- 2.6 Passivity and Dissipativity Theory -- 2.6.1 Passivity -- 2.6.2 Dissipativity -- 2.7 Power Flow Model -- 2.7.1 Nonlinear Power Flow -- 2.7.1.1 Bus Injection Model (BIM) -- 2.7.1.2 Branch Flow Model (BFM) -- 2.7.2 Linear Power Flow -- 2.7.2.1 DC Power Flow -- 2.7.2.2 Linearized Branch Flow -- 2.8 Power System Dynamics -- 2.8.1 Synchronous Generator Model -- 2.8.2 Inverter Model -- Bibliography -- Chapter 3 Bridging Control and Optimization in Distributed Optimal Frequency Control.
3.1 Background -- 3.1.1 Motivation -- 3.1.2 Summary -- 3.1.3 Organization -- 3.2 Power System Model -- 3.2.1 Generator Buses -- 3.2.2 Load Buses -- 3.2.3 Branch Flows -- 3.2.4 Dynamic Network Model -- 3.3 Design and Stability of Primary Frequency Control -- 3.3.1 Optimal Load Control -- 3.3.2 Main Results -- 3.3.3 Implications -- 3.4 Convergence Analysis -- 3.5 Case Studies -- 3.5.1 Test System -- 3.5.2 Simulation Results -- 3.6 Conclusion and Notes -- Bibliography -- Chapter 4 Physical Restrictions: Input Saturation in Secondary Frequency Control -- 4.1 Background -- 4.2 Power System Model -- 4.3 Control Design for Per‐Node Power Balance -- 4.3.1 Control Goals -- 4.3.2 Decentralized Optimal Controller -- 4.3.3 Design Rationale -- 4.3.3.1 Primal-Dual Algorithms -- 4.3.3.2 Design of Controller (4.6) -- 4.4 Optimality and Uniqueness of Equilibrium -- 4.5 Stability Analysis -- 4.6 Case Studies -- 4.6.1 Test System -- 4.6.2 Simulation Results -- 4.6.2.1 Stability and Optimality -- 4.6.2.2 Dynamic Performance -- 4.6.2.3 Comparison with AGC -- 4.6.2.4 Digital Implementation -- 4.7 Conclusion and Notes -- Bibliography -- Chapter 5 Physical Restrictions: Line Flow Limits in Secondary Frequency Control -- 5.1 Background -- 5.2 Power System Model -- 5.3 Control Design for Network Power Balance -- 5.3.1 Control Goals -- 5.3.2 Distributed Optimal Controller -- 5.3.3 Design Rationale -- 5.3.3.1 Primal-Dual Gradient Algorithms -- 5.3.3.2 Controller Design -- 5.4 Optimality of Equilibrium -- 5.5 Asymptotic Stability -- 5.6 Case Studies -- 5.6.1 Test System -- 5.6.2 Simulation Results -- 5.6.2.1 Stability and Optimality -- 5.6.2.2 Dynamic Performance -- 5.6.2.3 Comparison with AGC -- 5.6.2.4 Congestion Analysis -- 5.6.2.5 Time Delay Analysis -- 5.7 Conclusion and Notes -- Bibliography.
Chapter 6 Physical Restrictions: Nonsmoothness of Objective Functions in Load‐Frequency Control -- 6.1 Background -- 6.2 Notations and Preliminaries -- 6.3 Power System Model -- 6.4 Control Design -- 6.4.1 Optimal Load Frequency Control Problem -- 6.4.2 Distributed Controller Design -- 6.5 Optimality and Convergence -- 6.5.1 Optimality -- 6.5.2 Convergence -- 6.6 Case Studies -- 6.6.1 Test System -- 6.6.2 Simulation Results -- 6.7 Conclusion and Notes -- Bibliography -- Chapter 7 Cyber Restrictions: Imperfect Communication in Power Control of Microgrids -- 7.1 Background -- 7.2 Preliminaries and Model -- 7.2.1 Notations and Preliminaries -- 7.2.2 Economic Dispatch Model -- 7.3 Distributed Control Algorithms -- 7.3.1 Synchronous Algorithm -- 7.3.2 Asynchronous Algorithm -- 7.4 Optimality and Convergence Analysis -- 7.4.1 Virtual Global Clock -- 7.4.2 Algorithm Reformulation -- 7.4.3 Optimality of Equilibrium -- 7.4.4 Convergence Analysis -- 7.5 Real‐Time Implementation -- 7.5.1 Motivation and Main Idea -- 7.5.2 Real‐Time ASDPD -- 7.5.2.1 AC MGs -- 7.5.2.2 DC Microgrids -- 7.5.3 Control Configuration -- 7.5.4 Optimality of the Implementation -- 7.6 Numerical Results -- 7.6.1 Test System -- 7.6.2 Non‐identical Sampling Rates -- 7.6.3 Random Time Delays -- 7.6.4 Comparison with the Synchronous Algorithm -- 7.7 Experimental Results -- 7.8 Conclusion and Notes -- Bibliography -- Chapter 8 Cyber Restrictions: Imperfect Communication in Voltage Control of Active Distribution Networks -- 8.1 Background -- 8.2 Preliminaries and System Model -- 8.2.1 Note and Preliminaries -- 8.2.2 System Modeling -- 8.3 Problem Formulation -- 8.4 Asynchronous Voltage Control -- 8.5 Optimality and Convergence -- 8.5.1 Algorithm Reformulation -- 8.5.2 Optimality of Equilibrium -- 8.5.3 Convergence Analysis -- 8.6 Implementation -- 8.6.1 Communication Graph.
8.6.2 Online Implementation -- 8.7 Case Studies -- 8.7.1 8‐Bus Feeder System -- 8.7.2 IEEE 123‐Bus Feeder System -- 8.8 Conclusion and Notes -- Bibliography -- Chapter 9 Robustness and Adaptability: Unknown Disturbances in Load‐Side Frequency Control -- 9.1 Background -- 9.2 Problem Formulation -- 9.2.1 Power Network -- 9.2.2 Power Imbalance -- 9.2.3 Equivalent Transformation of Power Imbalance -- 9.3 Controller Design -- 9.3.1 Controller for Known P‾jin -- 9.3.2 Controller for Time‐Varying Power Imbalance -- 9.3.3 Closed‐Loop Dynamics -- 9.4 Equilibrium and Stability Analysis -- 9.4.1 Equilibrium -- 9.4.2 Asymptotic Stability -- 9.5 Robustness Analysis -- 9.5.1 Robustness Against Uncertain Parameters -- 9.5.2 Robustness Against Unknown Disturbances -- 9.6 Case Studies -- 9.6.1 System Configuration -- 9.6.2 Self‐Generated Data -- 9.6.3 Performance Under Unknown Disturbances -- 9.6.4 Simulation with Real Data -- 9.6.5 Comparison with Existing Control Methods -- 9.7 Conclusion and Notes -- Bibliography -- Chapter 10 Robustness and Adaptability: Partial Control Coverage in Transient Frequency Control -- 10.1 Background -- 10.2 Structure‐Preserving Model of Nonlinear Power System Dynamics -- 10.2.1 Power Network -- 10.2.2 Synchronous Generators -- 10.2.3 Dynamics of Voltage Phase Angles -- 10.2.4 Communication Network -- 10.3 Formulation of Optimal Frequency Control -- 10.3.1 Optimal Power‐Sharing Among Controllable Generators -- 10.3.2 Equivalent Model With Virtual Load -- 10.4 Control Design -- 10.4.1 Controller for Controllable Generators -- 10.4.2 Active Power Dynamics of Uncontrollable Generators -- 10.4.3 Excitation Voltage Dynamics of Generators -- 10.5 Optimality and Stability -- 10.5.1 Optimality -- 10.5.2 Stability -- 10.6 Implementation With Frequency Measurement -- 10.6.1 Estimating μi Using Frequency Feedback -- 10.6.2 Stability Analysis.
10.7 Case Studies -- 10.7.1 Test System and Data -- 10.7.2 Performance Under Small Disturbances -- 10.7.2.1 Equilibrium and its Optimality -- 10.7.2.2 Performance of Frequency Dynamics -- 10.7.3 Performance Under Large Disturbances -- 10.7.3.1 Generator Tripping -- 10.7.3.2 Short‐Circuit Fault -- 10.8 Conclusion and Notes -- Bibliography -- Chapter 11 Robustness and Adaptability: Heterogeneity in Power Controls of DC Microgrids -- 11.1 Background -- 11.2 Network Model -- 11.3 Optimal Power Flow of DC Networks -- 11.3.1 OPF Model -- 11.3.2 Uniqueness of Optimal Solution -- 11.4 Control Design -- 11.4.1 Distributed Optimization Algorithm -- 11.4.2 Optimality of Equilibrium -- 11.4.3 Convergence Analysis -- 11.5 Implementation -- 11.6 Case Studies -- 11.6.1 Test System and Data -- 11.6.2 Accuracy Analysis -- 11.6.3 Dynamic Performance Verification -- 11.6.4 Performance in Plug‐n‐play Operations -- 11.7 Conclusion and Notes -- Bibliography -- Appendix A Typical Distributed Optimization Algorithms -- A.1 Consensus‐Based Algorithms -- A.1.1 Consensus Algorithms -- A.1.2 Cutting‐Plane Consensus Algorithm -- A.2 First‐Order Gradient‐Based Algorithms -- A.2.1 Dual Decomposition -- A.2.2 Alternating Direction Method of Multipliers -- A.2.3 Primal-Dual Gradient Algorithm -- A.2.4 Proximal Gradient Method -- A.3 Second‐Order Newton‐Based Algorithms -- A.3.1 Barrier Method -- A.3.2 Primal-Dual Interior‐Point Method -- A.4 Zeroth‐Order Online Algorithms -- Bibliography -- Appendix B Optimal Power Flow of Direct Current Networks -- B.1 Mathematical Model -- B.1.1 Formulation -- B.1.2 Equivalent Transformation -- B.2 Exactness of SOC Relaxation -- B.2.1 SOC Relaxation of OPF in DC Networks -- B.2.2 Assumptions -- B.2.3 Exactness of the SOC Relaxation -- B.2.4 Topological Independence -- B.2.5 Uniqueness of the Optimal Solution -- B.2.6 Branch Flow Model.
B.3 Case Studies.
Titolo autorizzato: Merging optimization and control in power systems  Visualizza cluster
ISBN: 1-119-82796-5
1-119-82793-0
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910830771003321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: IEEE Press Series on Control Systems Theory and Applications