Vai al contenuto principale della pagina
| Autore: |
Burban Igor <1977->
|
| Titolo: |
Maximal Cohen-Macaulay modules over non-isolated surface singularities and matrix problems / / Igor Burban, Yuriy Drozd
|
| Pubblicazione: | Providence, Rhode Island : , : American Mathematical Society, , 2017 |
| ©2017 | |
| Descrizione fisica: | 1 online resource (134 pages) |
| Disciplina: | 512/.44 |
| Soggetto topico: | Cohen-Macaulay modules |
| Modules (Algebra) | |
| Singularities (Mathematics) | |
| Persona (resp. second.): | DrozdYurij A. |
| Nota di bibliografia: | Includes bibliographical references. |
| Nota di contenuto: | Introduction, motivation, and historical remarks -- Generalities on maximal Cohen-Macaulay modules -- Category of triples in dimension one -- Main construction -- Serre quotients and proof of main theorem -- Singularities obtained by gluing cyclic quotient singularities -- Maximal Cohen-Macaulay modules over k[x,y,z]/(x p2 s+y p3 s-xyz) -- Representations of decorated bundles of chans - I -- Maximal Cohen-Macaulay modules over degenerate cusps - I -- Maximal Cohen-Macaulay modules over degenerate cusps - II -- Schreyer's question -- Remarks on rings of discrete and tame CM-representation type -- Representations of decorated bunches of chans - II. |
| Titolo autorizzato: | Maximal Cohen-Macaulay modules over non-isolated surface singularities and matrix problems ![]() |
| ISBN: | 1-4704-4058-X |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910809969503321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |