Vai al contenuto principale della pagina
| Autore: |
López-Flores Francisco Javier
|
| Titolo: |
Machine learning tools for chemical engineering : methodologies and applications / / Francisco Javier López-Flores, Rogelio Ochoa-Barragán, Alma Yunuen Raya-Tapia, César Ramírez-Márquez, José Maria Ponce-Ortega
|
| Pubblicazione: | Elsevier Science [Imprint] |
| San Diego, : Elsevier Science & Technology Books | |
| Saint Louis, : Elsevier [Distributor] | |
| Chantilly : , : Elsevier Science & Technology, , 2025 | |
| ©2026 | |
| Edizione: | 1st ed. |
| Descrizione fisica: | 1 online resource (630 pages) |
| Disciplina: | 660.0285631 |
| Soggetto topico: | Chemical engineering - Data processing |
| Machine learning - Industrial applications | |
| Génie chimique - Informatique | |
| Apprentissage automatique - Applications industrielles | |
| Persona (resp. second.): | Raya-TapiaAlma Yunuen |
| Ochoa-BarragánRogelio | |
| Ramírez-MárquezCésar | |
| Sommario/riassunto: | Machine Learning Tools for Chemical Engineering: Methodologies and Applications examines how machine learning (ML) techniques are applied in the field, offering precise, fast, and flexible solutions to address specific challenges.ML techniques and methodologies offer significant advantages (such as accuracy, speed of execution, and flexibility). |
| Titolo autorizzato: | Machine learning tools for chemical engineering ![]() |
| ISBN: | 0-443-29059-8 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9911044026503321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |